Skip to main content

Patient Search

KaCrole Higgins was diagnosed with breast cancer in 2020. “In May 2020, I found a lump in my breast. I cried. By June, it was diagnosed as breast cancer, triple positive, stage 1A. While getting this cancer diagnosis was devastating, it also became an opportunity. Suddenly, the cancer gave me clarity. It gave me clarity about what was important, what was good in my life, what was toxic in my life, and what I needed to do.” Click below to read more of KaCrole’s story

https://momentum.vicc.org/2022/04/cancer-gave-me-clarity/

If Landon Ryan had been diagnosed with bilateral retinoblastoma 10, 20 or 30 years ago, she might not be here today with nearly perfect vision.Thanks to recent improvements in the treatment for this rare form of cancer that almost exclusively affects children under the age of 5, the diagnosis had the power to change Landon’s life when she was 11 months old, but not to take it — or her eyesight. Click below to learn more about Landon and her story.

https://momentum.vicc.org/2022/04/brighter-outlook/
Displaying 1 - 10 of 54

Circulating Tumor DNA to Guide Changes in Standard of Care Chemotherapy

Breast

This phase II trial tests how well evaluating circulating tumor deoxyribonucleic acid (ctDNA) works to guide therapy-change decisions in treating patients with triple-negative breast cancer (TNBC) that has spread from where it first started (primary site) to other places in the body (metastatic). This study wants to learn if small pieces of DNA associated with a tumor (called circulating tumor DNA, or ctDNA) can be detected in investigational blood tests during the course of standard chemotherapy treatment for breast cancer, and whether information from such investigational ctDNA blood testing could possibly be used as an early indication of chemotherapy treatment failure. It is hoped that additional information from investigational blood testing for ctDNA could help doctors to switch more quickly from a standard chemotherapy treatment that typically has significant side effects and which may not be working, to a different standard treatment regimen against TNBC, called sacituzumab govitecan. Sacituzumab govitecan is a monoclonal antibody, called hRS7, linked to a chemotherapy drug, called irinotecan. hRS7 is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as TROP2 receptors, and delivers irinotecan to kill them. Studying ctDNA may assist doctors to change therapy earlier if needed, and may improve health outcomes in patients with metastatic TNBC.
Breast
II
Abramson, Vandana
NCT05770531
VICCBRE2257

Phase II Panitumumab-IRDye800 in Head & Neck Cancer

Head/Neck

The purpose of this study is to determine if panitumumab-IRDye800 is effective in identifying cancer, compared to surrounding normal tissue, and the further characterize the safety profile of this drug.
Head/Neck
II
Rosenthal, Eben
NCT04511078
VICCHN21109

Belzutifan/MK-6482 for the Treatment of Advanced Pheochromocytoma/Paraganglioma (PPGL), Pancreatic Neuroendocrine Tumor (pNET), Von Hippel-Lindau (VHL) Disease-Associated Tumors, Advanced Gastrointestinal Stromal Tumor (wt GIST), or Solid Tumors With HIF-2 Related Genetic Alterations (MK-6482-015)

Multiple Cancer Types

This is a study to evaluate the efficacy and safety of belzutifan monotherapy in participants with advanced pheochromocytoma/paraganglioma (PPGL), pancreatic neuroendocrine tumor (pNET), von Hippel-Lindau (VHL) disease-associated tumors, advanced wt (wild-type) gastrointestinal stromal tumor (wt GIST), or advanced solid tumors with hypoxia inducible factor-2 alpha (HIF-2) related genetic alterations. The primary objective of the study is to evaluate the objective response rate (ORR) of belzutifan per response evaluation criteria in solid tumors version 1.1 (RECIST 1.1) by blinded independent central review (BICR).
Endocrine, Pancreatic
II
Ramirez, Robert
NCT04924075
VICCMD2132

Inotuzumab Ozogamicin in Treating Younger Patients With B-Lymphoblastic Lymphoma or Relapsed or Refractory CD22 Positive B Acute Lymphoblastic Leukemia

This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
Not Available
II
Not Available
NCT02981628
COGAALL1621

Cabozantinib for Patients With Recurrent or Progressive Meningioma

Neuro-Oncology

A Phase II Study of Cabozantinib for Patients with Recurrent or Progressive Meningioma
Neuro-Oncology
II
Mohler, Alexander
NCT05425004
VICC-ITNEU23261

pBI-11 & TA-HPV (With Pembrolizumab as Treatment for Patients w/Advanced, PD-L1 CPS1, hrHPV+ Oropharyngeal Cancer

This phase II trial tests how well pB1-11 and human papillomavirus tumor antigen (TA-HPV) vaccines in combination with pembrolizumab work in treating patients with oropharyngeal cancer that has come back (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic) and that is PD-L1 and human papillomavirus (HPV) positive. Oropharyngeal cancer is a type of head and neck cancer involving structures in the back of the throat (the oropharynx), such as the non-bony back roof of the mouth (soft palate), sides and back wall of the throat, tonsils, and back third of the tongue. Scientists have found that some strains or types of a virus called HPV can cause oropharyngeal cancer. pBI-11 is a circular deoxyribonucleic acid (DNA) (plasmid) vaccine that promotes antibody, cytotoxic T cell, and protective immune responses. TA-HPV is an investigational recombinant vaccina virus derived from a strain of the vaccina virus which was widely used for smallpox vaccination. Vaccination with this TA-HPV vaccine may stimulate the immune system to mount a cytotoxic T cell response against tumor cells positive for HPV, resulting in decreased tumor growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread by inhibiting the PD-1 receptor. These investigational vaccines could cause or enhance an immune response in the body against HPV, during which time the activity of pembrolizumab against oropharyngeal cancer associated with HPV may be strengthened. These drugs in combination may be more effective in increasing the ability of the immune system to fight oropharyngeal cancer than pembrolizumab alone.
Not Available
II
Not Available
NCT05799144
VICCHN2208

Targeted Treatment for Metastatic Prostate Cancer, The PREDICT Trial

This phase II trial evaluates whether genetic testing in prostate cancer is helpful in deciding which study treatment patients are assigned. Patient cancer tissue samples are obtained from a previous surgery or biopsy procedure and tested for deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) abnormalities or mutations in their cancer. Valemetostat tosylate is in a class of medications called EZH1/EZH2 inhibitors. It blocks proteins called EZH1 and EZH2, which may help slow or stop the spread of tumor cells. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Cabazitaxel injection is in a class of medications called microtubule inhibitors. It works by slowing or stopping the growth of tumor cells. Abiraterone acetate blocks tissues from making androgens (male hormones), such as testosterone. This may cause the death of tumor cells that need androgens to grow. It is a type of anti-androgen. Enzalutamide is in a class of medications called androgen receptor inhibitors. It works by blocking the effects of androgen (a male reproductive hormone) to stop the growth and spread of tumor cells. Lutetium Lu 177 vipivotide tetraxetan is in a class of medications called radiopharmaceuticals. It works by targeting and delivering radiation directly to tumor cells which damages and kills these cells. Assigning patients to targeted treatment based on genetic testing may help shrink or slow the cancer from growing
Not Available
II
Schaffer, Kerry
NCT06632977
ALLUROA032102

Testing the Use of AMG 510 (Sotorasib) and Panitumumab as a Targeted Treatment for KRAS G12C Mutant Solid Tumor Cancers (A ComboMATCH Treatment Trial)

This phase II ComboMATCH treatment trial tests how well AMG 510 (sotorasib) with or without panitumumab works in treating patients with KRAS G12C mutant solid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Sotorasib is in a class of medications called KRAS inhibitors. It works by blocking the action of the abnormal protein that signals cancer cells to multiply. This helps stop or slow the spread of cancer cells. Panitumumab is in a class of medications called monoclonal antibodies. It works by slowing or stopping the growth of cancer cells. Giving combination panitumumab and sotorasib may kill more tumor cells in patients with advanced solid tumors with KRAS G12C mutation.
Not Available
II
Choe, Jennifer
NCT05638295
ECOGMDEAY191-E5

Testing the Addition of the Anti-cancer Drug Venetoclax and/or the Anti-cancer Immunotherapy Blinatumomab to the Usual Chemotherapy Treatment for Infants With Newly Diagnosed KMT2A-rearranged or KMT2A-non-rearranged Leukemia

Leukemia

This phase II trial tests the addition of venetoclax and/or blinatumomab to usual chemotherapy for treating infants with newly diagnosed acute lymphoblastic leukemia (ALL) with a KMT2A gene rearrangement (KMT2A-rearranged \[R\]) or without a KMT2A gene rearrangement (KMT2A-germline \[G\]). Venetoclax is in a class of medications called B-cell lymphoma-2 (Bcl-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Blinatumomab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Chemotherapy drugs work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding venetoclax and/or blinatumomab to standard chemotherapy may be more effective at treating patients with ALL than standard chemotherapy alone, but it may also cause more side effects. This clinical trial evaluates the safety and effectiveness of adding venetoclax and/or blinatumomab to chemotherapy for the treatment of infants with KMT2A-R or KMT2A-G ALL.
Leukemia
II
Smith, Brianna
NCT06317662
COGAALL2321

Testing the Effectiveness of Two Immunotherapy Drugs (Nivolumab and Ipilimumab) With One Anti-cancer Targeted Drug (Cabozantinib) for Rare Genitourinary Tumors

Multiple Cancer Types

This phase II trial studies how well cabozantinib works in combination with nivolumab and ipilimumab in treating patients with rare genitourinary (GU) tumors that has spread from where it first started (primary site) to other places in the body. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib, nivolumab, and ipilimumab may work better in treating patients with genitourinary tumors that have no treatment options compared to giving cabozantinib, nivolumab, or ipilimumab alone.
Bladder, Kidney (Renal Cell), Rectal
II
Tan, Alan
NCT03866382
ALLIANCEUROA031702