Gravity Versus Vacuum Based Indwelling Tunneled Pleural Drainage System
Lung
Lung
Malignant pleural effusion remains a debilitating complication of end stage cancer, which can be greatly improved by the introduction of the indwelling tunneled pleural catheter (IPC). However, there is no standard of care regarding drainage and limited data on the utility of different drainage techniques. In addition, many patients develop discomfort and chest pain during drainage. The investigators propose to evaluate gravity drainage and suction drainage on quality of life measures and outcomes.
Lung
N/A
Maldonado, Fabien
NCT03831386
VICCTHO19118
Carmustine Wafer in Combination With Retifanlimab and Radiation With/Without Temozolomide in Subjects With Glioblastoma
Multiple Cancer Types
The purpose of the study is to evaluate the safety and survival of carmustine wafers and radiation and retifanlimab with or without temozolomide (TMZ) in newly-diagnosed adult subjects with glioblastoma multiform after carmustine wafer placement.
Neuro-Oncology,
Phase I
I
Thompson, Reid
NCT05083754
VICCNEUP22119
Active Myeloid Target Compound Combinations in MDS/MPN Overlap Syndromes Overlap Syndromes (ABNL-MARRO)
ABNL-MARRO (A Basket study of Novel therapy for untreated MDS/MPN and Relapsed/Refractory Overlap Syndromes) is an international European-American cooperation providing the framework for collaborative studies to advance treatment of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) and explore clinical-pathologic markers of disease severity, prognosis and treatment response.
ABNL MARRO 001 (AM-001) is an Open label, phase 1/2 study within the framework of the ABNL-MARRO that will test novel treatment combinations in MDS/MPN. Each Arm of AM-001 will test an active myeloid target compound in combination with ASTX727, an oral drug combining fixed doses of the DNA methyltransferase inhibitor (DNMTi) decitabine and the cytidine deaminase inhibitor E7727, also known as cedazuridine in a single tablet.
ABNL MARRO 001 (AM-001) is an Open label, phase 1/2 study within the framework of the ABNL-MARRO that will test novel treatment combinations in MDS/MPN. Each Arm of AM-001 will test an active myeloid target compound in combination with ASTX727, an oral drug combining fixed doses of the DNA methyltransferase inhibitor (DNMTi) decitabine and the cytidine deaminase inhibitor E7727, also known as cedazuridine in a single tablet.
Not Available
I/II
Not Available
NCT04061421
VICCHEMP1977
A Study of Lower Radiotherapy Dose to Treat Children With CNS Germinoma
This phase II trial studies how well lower dose radiotherapy after chemotherapy (Carboplatin \& Etoposide) works in treating children with central nervous system (CNS) germinomas. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill cancer cells. Researchers want to see if lowering the dose of standard radiotherapy (RT) after chemotherapy can help get rid of CNS germinomas with fewer long-term side effects.
Not Available
II
Esbenshade, Adam
NCT06368817
COGACNS2321
Pembrolizumab vs. Observation in People With Triple-negative Breast Cancer Who Had a Pathologic Complete Response After Chemotherapy Plus Pembrolizumab
Breast
Breast
The phase III trial compares the effect of pembrolizumab to observation for the treatment of patients with early-stage triple-negative breast cancer who achieved a pathologic complete response after preoperative chemotherapy in combination with pembrolizumab. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial may help researchers determine if observation will result in the same risk of cancer coming back as pembrolizumab after surgery in triple-negative breast cancer patients who achieve pathologic complete response after preoperative chemotherapy with pembrolizumab.
Breast
III
Abramson, Vandana
NCT05812807
VICC-NTBRE23357
Disposable Perfusion Phantom for Accurate DCE (Dynamic Contrast Enhanced)-MRI Measurement of Pancreatic Cancer Therapy Response
Pancreatic
Pancreatic
The goal of this study is to investigate whether the therapeutic response of pancreatic tumors can be accurately assessed using quantitative DCE-MRI, when the inter/intra-scanner variability is reduced using the Point-of-care Portable Perfusion Phantom, P4. The intra-scanner variability over time leads to errors in therapy monitoring, while the inter-scanner variability impedes the comparison of data among institutes. The P4 is small enough to be imaged concurrently in the bore of a standard MRI scanner with a patient for real-time quality assurance. The P4 is safe, inexpensive and easily operable, thus it has great potential for widespread and routine clinical use for accurate diagnosis, prognosis and therapy monitoring.
This study has identified two arms, one arm is healthy individuals that will undergo DCE MRI at three different MRI locations to establish baseline results. The healthy volunteers will undergo these MRIs prior to the second arm, which contains patients with pancreatic cancer. The pancreatic cancer patients will only have DCE MRI done at one location.
This study has identified two arms, one arm is healthy individuals that will undergo DCE MRI at three different MRI locations to establish baseline results. The healthy volunteers will undergo these MRIs prior to the second arm, which contains patients with pancreatic cancer. The pancreatic cancer patients will only have DCE MRI done at one location.
Pancreatic
N/A
Xu, Junzhong
NCT04588025
VICCGI2099
Measuring if Immunotherapy Plus Chemotherapy is Better Than Chemotherapy Alone for Patients With Aggressive Poorly Differentiated Sarcomas
This phase III trial compares the effect of immunotherapy (pembrolizumab) plus chemotherapy (doxorubicin) to chemotherapy (doxorubicin) alone in treating patients with dedifferentiated liposarcoma (DDLPS), undifferentiated pleomorphic sarcoma (UPS) or a related poorly differentiated sarcoma that has spread from where it first started (primary site) to other places in the body (metastatic) or that cannot be removed by surgery (unresectable). Doxorubicin is in a class of medications called anthracyclines. Doxorubicin damages the cell's deoxyribonucleic acid (DNA) and may kill tumor cells. It also blocks a certain enzyme needed for cell division and DNA repair. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Adding immunotherapy (pembrolizumab) to the standard chemotherapy (doxorubicin) may help patients with metastatic or unresectable DDLPS, UPS or a related poorly differentiated sarcoma live longer without having disease progression.
Not Available
III
Davis, Elizabeth
NCT06422806
VICC-NTSAR24139
A Study of Treatment for Medulloblastoma Using Sodium Thiosulfate to Reduce Hearing Loss
This phase III trial tests two hypotheses in patients with low-risk and average-risk medulloblastoma. Medulloblastoma is a type of cancer that occurs in the back of the brain. The term, risk, refers to the chance of the cancer coming back after treatment. Subjects with low-risk medulloblastoma typically have a lower chance of the cancer coming back than subjects with average-risk medulloblastoma. Although treatment for newly diagnosed average-risk and low-risk medulloblastoma is generally effective at treating the cancer, there are still concerns about the side effects of such treatment. Side effects or unintended health conditions that arise due to treatment include learning difficulties, hearing loss or other issues in performing daily activities. Standard therapy for newly diagnosed average-risk or low-risk medulloblastoma includes surgery, radiation therapy, and chemotherapy (including cisplatin). Cisplatin may cause hearing loss as a side effect. In the average-risk medulloblastoma patients, this trial tests whether the addition of sodium thiosulfate (STS) to standard of care chemotherapy and radiation therapy reduces hearing loss. Previous studies with STS have shown that it may help reduce or prevent hearing loss caused by cisplatin. In the low-risk medulloblastoma patients, the study tests whether a less intense therapy (reduced radiation) can provide the same benefits as the more intense therapy. The less intense therapy may cause fewer side effects. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. The overall goals of this study are to see if giving STS along with standard treatment (radiation therapy and chemotherapy) will reduce hearing loss in medulloblastoma patients and to compare the overall outcome of patients with medulloblastoma treated with STS to patients treated without STS on a previous study in order to make sure that survival and recurrence of tumor is not worsened.
Not Available
III
Not Available
NCT05382338
VICC-NTPED23124
Neoadjuvant Darolutamide Alone or in Combination With Standard Therapy for Stage II-IIIA, AR+, TNBC
Breast
Breast
This phase II trial compares the effect of adding darolutamide to standard therapy versus standard therapy alone before surgery for the treatment of patients with stage II-IIIA androgen receptor positive triple-negative breast carcinoma. Standard therapy before surgery for triple-negative breast cancer typically consists of a combination of chemotherapy and immunotherapy drugs. Chemotherapy drugs, such as carboplatin, paclitaxel, doxorubicin and cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Darolutamide is in a class of medications called androgen receptor inhibitors. It works by blocking the effects of androgen (a male reproductive hormone) to stop the growth and spread of tumor cells. Giving darolutamide in combination with standard therapy before surgery may make the tumor smaller and may reduce the amount of normal tissue that needs to be removed.
Breast
II
Abramson, Vandana
NCT07016399
VICC-VCBRE23490
Testing the Combination of New Anti-cancer Drug Peposertib With Avelumab and Radiation Therapy for Advanced/Metastatic Solid Tumors and Hepatobiliary Malignancies
This phase I/II trial studies the best dose and side effects of peposertib and to see how well it works with avelumab and hypofractionated radiation therapy in treating patients with solid tumors and hepatobiliary malignancies that have spread to other places in the body (advanced/metastatic). Peposertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as avelumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving peposertib in combination with avelumab and hypofractionated radiation therapy may work better than other standard chemotherapy, hormonal, targeted, or immunotherapy medicines available in treating patients with solid tumors and hepatobiliary malignancies.
Not Available
I/II
Heumann, Thatcher
NCT04068194
VICC-NTGIT24020