Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



A Study of Engineered Donor Grafts (Orca-T) in Recipients Undergoing Allogeneic Transplantation for Hematologic Malignancies

Multiple Cancer Types

This study will evaluate the safety, tolerability, and efficacy of an engineered donor graft
("Orca-T", a T-cell-Depleted Graft With Additional Infusion of Conventional T Cells and
Regulatory T Cells) in participants undergoing myeloablative allogeneic hematopoietic cell
transplant transplantation for hematologic malignancies.
Leukemia, Myelodysplastic Syndrome, Phase I
I
Dholaria, Bhagirathbhai
NCT04013685
VICCCTTP2086

Venetoclax in Children With Relapsed Acute Myeloid Leukemia (AML)

Multiple Cancer Types

A study to evaluate if the randomized addition of venetoclax to a chemotherapy backbone
(fludarabine/cytarabine/gemtuzumab ozogamicin [GO]) improves survival of
children/adolescents/young adults with acute myeloid leukemia (AML) in 1st relapse who are
unable to receive additional anthracyclines, or in 2nd relapse.
Pediatric Leukemia, Pediatrics
III
Smith, Christine
NCT05183035
VICCPED2237

Selinexor and Venetoclax in Combination with Chemotherapy for the Treatment of Relapsed or Refractory Acute Myeloid Leukemia or Acute Leukemia of Ambiguous Lineage

Multiple Cancer Types

This phase I trial evaluates the side effects and best dose of selinexor and venetoclax in combination with chemotherapy in treating patients with acute myeloid leukemia or acute leukemia of ambiguous linage that has come back (relapsed) or does not respond to treatment. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Selinexor may stop the growth of cancer cells by blocking CRM1, which help the body's immune system to find and kill cancer cells. Chemotherapy drugs, such as fludarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Colony-stimulating factors, such as granulocyte colony-stimulating factor, may increase the production of blood cells and may help the immune system recover from the side effects of chemotherapy. Giving venetoclax and selinexor with chemotherapy may help control the disease in patients with acute myeloid leukemia or acute leukemia of ambiguous lineage.
Leukemia, Pediatric Leukemia, Pediatrics, Phase I
I
Smith, Brianna
NCT04898894
VICCPEDP2235

INCB000928 Administered as a Monotherapy or in Combination With Ruxolitinib in Participants With Anemia Due to Myeloproliferative Disorders

Miscellaneous

This Phase 1/2, open-label, dose-finding study is intended to evaluate the safety and
tolerability, PK, PD, and efficacy of INCB000928 administered as monotherapy or in
combination with ruxolitinib in participants with MF who are transfusion-dependent or
presenting with symptomatic anemia. This study will consist of 2 parts: dose escalation and
expansion.
Miscellaneous
I/II
Mohan, Sanjay
NCT04455841
VICCHEMP2051

A Study of Adjuvant Pembrolizumab/Vibostolimab (MK-7684A) Versus Pembrolizumab for Resected High-Risk Melanoma in Participants With High-Risk Stage II-IV Melanoma (MK-7684A-010/KEYVIBE-010)

Melanoma

The primary purpose of this study is to compare pembrolizumab/vibostolimab to pembrolizumab
with respect to recurrence-free survival (RFS). The primary hypothesis is that
pembrolizumab/vibostolimab is superior to pembrolizumab with respect to RFS as assessed by
the investigator in participants with high-risk resected Stage IIB, IIC, III and IV melanoma.
Melanoma
III
Johnson, Douglas
NCT05665595
VICC-DTMEL23033

Phase 1b Combo w/ Ribociclib and Alpelisib

Multiple Cancer Types

This is a Phase 1b open-label, 2-part study in 2 treatment groups. The 2 treatment groups are
as follows:

Treatment Group 1: OP-1250 in combination with ribociclib (KISQALI, Novartis Pharmaceuticals
Corporation).

Treatment Group 2: OP-1250 in combination with alpelisib (PIQRAY, Novartis Pharmaceuticals
Corporation).
Breast, Phase I
I
Nunnery, Sara
NCT05508906
VICCBREP2267

A Study of E7386 in Combination With Other Anticancer Drug in Participants With Solid Tumor

Multiple Cancer Types

The primary objective of this study is to assess the safety and tolerability and to determine
the recommended Phase 2 dose (RP2D) of E7386 in combination with other anticancer drug(s).
Gynecologic, Liver, Phase I
I
Goff, Laura
NCT04008797
VICC-DTPHI23106

Evorpacept (ALX148) in Combination With Pembrolizumab in Patients With Advanced Head and Neck Squamous Cell Carcinoma (ASPEN-03)

Head/Neck

A Phase 2 Study of Evorpacept (ALX148) in Combination With Pembrolizumab in Patients With
Advanced Head and Neck Squamous Cell Carcinoma.
Head/Neck
II
Choe, Jennifer
NCT04675294
VICCHN20127

Niraparib and Dostarlimab as Neoadjuvant Treatment for Patients with BRCA-Mutated or PALB2-Mutated Stage I-III Breast Cancer

Breast

This phase II trial studies the effects of niraparib in combination with dostarlimab prior to surgery in treating BRCA-mutated or PALB2-mutated stage I-III breast cancer. Niraparib is a PARP inhibitor, which means that it blocks an enzyme (proteins that help chemical reactions in the body occur) in cells called PARP. PARP helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Dostarlimab stimulates the immune system by blocking the PD-1 pathway. The PD-1 pathway controls the bodys natural immune response, but for some types of cancer, the immune system does not work as it should and is prevented from attacking tumors. Dostarlimab works by blocking the PD-1 pathway, which may help your immune system identify and catch tumor cells. Giving niraparib in combination with dostarlimab may work better against the tumor and maximize tumor shrinkage before surgery.
Breast
II
Abramson, Vandana
NCT04584255
VICCBRE2190

Conditioning SCID Infants Diagnosed Early

Multiple Cancer Types

The investigators want to study if lower doses of chemotherapy will help babies with SCID to
achieve good immunity with less short and long-term risks of complications after
transplantation. This trial identifies babies with types of immune deficiencies that are most
likely to succeed with this approach and offers them transplant early in life before they get
severe infections or later if their infections are under control. It includes only patients
receiving unrelated or mismatched related donor transplants.

The study will test if patients receiving transplant using either a low dose busulfan or a
medium dose busulfan will have immune recovery of both T and B cells, measured by the ability
to respond to immunizations after transplant. The exact regimen depends on the subtype of
SCID the patient has. Donors used for transplant must be unrelated or half-matched related
(haploidentical) donors, and peripheral blood stem cells must be used. To minimize the chance
of graft-versus-host disease (GVHD), the stem cells will have most, but not all, of the T
cells removed, using a newer, experimental approach of a well-established technology. Once
the stem cell transplant is completed, patients will be followed for 3 years. Approximately
9-18 months after the transplant, vaccinations will be administered, and a blood test
measuring whether your child's body has responded to the vaccine will be collected.
Hematologic, Pediatrics
II
Connelly, James
NCT03619551
VICCNCPED18122

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.