Endoscopic Gastroenterostomy Versus Surgical Gastrojejunostomy
Gastrointestinal
Gastrointestinal
Recent comparative data suggest that EUS gastroenterostomy offers more durable patency than enteral stents for treatment of malignant GOO, leading some endoscopists to suggest that EUS gastroenterostomy should be the preferred endoscopic treatment approach.
EUS gastroenterostomy and surgical gastrojejunostomy have been compared in retrospective cohort analysis, suggesting a high technical success rate a shorter hospital length of stay for the endoscopic approach \[4\]. Comparison of these techniques has not been reported in controlled prospective fashion. A prospective trial is necessary in order to define the optimal interventional management option for treatment of malignant GOO in the context of the contemporary and rapidly evolved range of available endoscopic and surgical treatment options.
EUS gastroenterostomy and surgical gastrojejunostomy have been compared in retrospective cohort analysis, suggesting a high technical success rate a shorter hospital length of stay for the endoscopic approach \[4\]. Comparison of these techniques has not been reported in controlled prospective fashion. A prospective trial is necessary in order to define the optimal interventional management option for treatment of malignant GOO in the context of the contemporary and rapidly evolved range of available endoscopic and surgical treatment options.
Gastrointestinal
N/A
Yachimski, Patrick
NCT06567691
VICCGI24560
Testing What Happens When an Immunotherapy Drug (Pembrolizumab) is Given by Itself Compared to the Usual Treatment of Chemotherapy With Radiation After Surgery for Recurrent Head and Neck Squamous Cell Carcinoma
Head/Neck
Head/Neck
This phase II trial studies the effect of pembrolizumab alone compared to the usual approach (chemotherapy \[cisplatin and carboplatin\] plus radiation therapy) after surgery in treating patients with head and neck squamous cell carcinoma that has come back (recurrent) or patients with a second head and neck cancer that is not from metastasis (primary). Radiation therapy uses high energy radiation or protons to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. Carboplatin is also in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab alone after surgery may work better than the usual approach in shrinking recurrent or primary head and neck squamous cell carcinoma.
Head/Neck
II
Choe, Jennifer
NCT04671667
ECOGHNEA3191
Lenalidomide, and Dexamethasone With or Without Daratumumab in Treating Patients With High-Risk Smoldering Myeloma
Multiple Myeloma
Multiple Myeloma
This phase III trial studies how well lenalidomide and dexamethasone works with or without daratumumab in treating patients with high-risk smoldering myeloma. Drugs used in chemotherapy, such as lenalidomide and dexamethasone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as daratumumab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Giving lenalidomide and dexamethasone with daratumumab may work better in treating patients with smoldering myeloma.
Multiple Myeloma
III
Baljevic, Muhamed
NCT03937635
ECOGPCLEAA173
A Study Testing the Combination of Dasatinib or Imatinib to Chemotherapy Treatment With Blinatumomab for Children, Adolescents, and Young Adults With Philadelphia Chromosome Positive (Ph+) or ABL-Class Philadelphia Chromosome-Like (Ph-Like) B-cell Acute Lymphoblastic Leukemia (B-ALL)
Leukemia
Leukemia
This pilot trial assesses the effect of the combination of blinatumomab with dasatinib or imatinib and standard chemotherapy for treating patients with Philadelphia chromosome positive (Ph+) or ABL-class Philadelphia chromosome-like (Ph-like) B-Cell acute lymphoblastic leukemia (B-ALL). Blinatumomab is a bispecific antibody that binds to two different proteins-one on the surface of cancer cells and one on the surface of cells in the immune system. An antibody is a protein made by the immune system to help fight infections and other harmful processes/cells/molecules. Blinatumomab may bind to the cancer cell and a T cell (which plays a key role in the immune system's fighting response) at the same time. Blinatumomab may strengthen the immune system's ability to fight cancer cells by activating the body's own immune cells to destroy the tumor. Dasatinib and imatinib are in a class of medications called tyrosine kinase inhibitors. They work by blocking the action of an abnormal protein that signals cancer cells to multiply, which may help keep cancer cells from growing. Giving blinatumomab and dasatinib or imatinib in combination with standard chemotherapy may work better in treating patients with Ph+ or Ph-like ABL-class B-ALL than dasatinib or imatinib with chemotherapy.
Leukemia
III
Smith, Brianna
NCT06124157
COGAALL2131
Testing the Use of Ado-Trastuzumab Emtansine Compared to the Usual Treatment (Chemotherapy With Docetaxel Plus Trastuzumab) or Trastuzumab Deruxtecan for Recurrent, Metastatic, or Unresectable HER2-Expressing Salivary Gland Cancers
Head/Neck
Head/Neck
This phase II trial compares the effect of usual treatment of docetaxel chemotherapy plus trastuzumab, to ado-emtansine (T-DM1) in patients with HER2-postive salivary gland cancer that has come back (recurrent), that has spread from where it first started (primary site) to other places in the body, or cannot be removed by surgery (unresectable). This trial is also testing how well trastuzumab deruxtecan works in treating patients with HER2-low recurrent or metastatic salivary gland cancer. Trastuzumab is a form of targeted therapy because it works by attaching itself to specific molecules (receptors) on the surface of cancer cells, known as HER2 receptors. When trastuzumab attaches to HER2 receptors, the signals that tell the cells to grow are blocked and the cancer cell may be marked for destruction by body's immune system. Trastuzumab emtansine contains trastuzumab, linked to a chemotherapy drug called emtansine. Trastuzumab attaches to HER2 positive cancer cells in a targeted way and delivers emtansine to kill them. Trastuzumab deruxtecan is a monoclonal antibody called traztuzumab, linked to a chemotherapy drug called deruxtecan. Trastuzumab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as HER2 receptors and delivers deruxtecan to kill them. Docetaxel is in a class of medications called taxanes. It stops cancer cells from growing and dividing and may kill them. Trastuzumab emtansine may work better compared to usual treatment of chemotherapy with docetaxel and trastuzumab or trastuzumab deruxtecan in treating patients with recurrent, metastatic or unresectable salivary gland cancer.
Head/Neck
II
Choe, Jennifer
NCT05408845
NRGHN010
FORTIFI-HN01: A Study of Ficerafusp Alfa (BCA101) or Placebo in Combination With Pembrolizumab in First-Line PD-L1-pos, R or M HNSCC
Head/Neck
Head/Neck
Ficerafusp alfa is directed against two targets, Epidermal Growth Factor Receptor (EGFR) and Transforming Growth Factor beta (TGF-).
This study intends to evaluate the safety and efficacy of ficerafusp alfa in combination with pembrolizumab versus placebo with pembrolizumab in 1L PD-L1-positive, recurrent or metastatic Head and Neck Squamous Cell Carcinoma (HNSCC).
This study intends to evaluate the safety and efficacy of ficerafusp alfa in combination with pembrolizumab versus placebo with pembrolizumab in 1L PD-L1-positive, recurrent or metastatic Head and Neck Squamous Cell Carcinoma (HNSCC).
Head/Neck
II/III
Choe, Jennifer
NCT06788990
VICC-DTHAN23428
Split Course Adaptive Radiation Therapy With Pembrolizumab With/Without Chemotherapy for Treating Stage IV Lung Cancer
Multiple Cancer Types
This phase I/II trial tests the safety and efficacy of split-course adaptive radiation therapy in combination with immunotherapy with or without chemotherapy for the treatment of patients with stage IV lung cancer or lung cancer that that has spread to nearby tissue or lymph nodes (locally advanced). Radiation therapy is a standard cancer treatment that uses high energy rays to kill cancer cells and shrink tumors. Split-course adaptive radiation therapy uses patient disease response to alter the intensity of the radiation therapy. Immunotherapy with monoclonal antibodies such as pembrolizumab, ipilimumab, cemiplimab, atezolizumab or nivolumab may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs like carboplatin, pemetrexed, and paclitaxel work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving split-course adaptive radiation therapy with standard treatments like immunotherapy and chemotherapy may be more effective at treating stage IV or locally advanced lung cancer than giving them alone.
Lung,
Non Small Cell,
Phase I
I/II
Osmundson, Evan
NCT05501665
VICCTHOP2185
Expanded Access Study for the Treatment of Patients With Commercially Out-of-Specification Brexucabtagene Autoleucel
Multiple Cancer Types
The goal of this study is to provide access to brexucabtagene autoleucel for patients diagnosed with a disease approved for treatment with brexucabtagene autoleucel, that is otherwise out of specification for commercial release.
Leukemia,
Lymphoma
N/A
Jallouk, Andrew
NCT05776134
VICC-XDCTT23451
Inotuzumab Ozogamicin in Treating Younger Patients With B-Lymphoblastic Lymphoma or Relapsed or Refractory CD22 Positive B Acute Lymphoblastic Leukemia
This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
Not Available
II
Not Available
NCT02981628
COGAALL1621
Testing the Use of AMG 510 (Sotorasib) and Panitumumab as a Targeted Treatment for KRAS G12C Mutant Solid Tumor Cancers (A ComboMATCH Treatment Trial)
This phase II ComboMATCH treatment trial tests how well AMG 510 (sotorasib) with or without panitumumab works in treating patients with KRAS G12C mutant solid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Sotorasib is in a class of medications called KRAS inhibitors. It works by blocking the action of the abnormal protein that signals cancer cells to multiply. This helps stop or slow the spread of cancer cells. Panitumumab is in a class of medications called monoclonal antibodies. It works by slowing or stopping the growth of cancer cells. Giving combination panitumumab and sotorasib may kill more tumor cells in patients with advanced solid tumors with KRAS G12C mutation.
Not Available
II
Choe, Jennifer
NCT05638295
ECOGMDEAY191-E5