Patient Search
![]() |
![]() |
KaCrole Higgins was diagnosed with breast cancer in 2020. “In May 2020, I found a lump in my breast. I cried. By June, it was diagnosed as breast cancer, triple positive, stage 1A. While getting this cancer diagnosis was devastating, it also became an opportunity. Suddenly, the cancer gave me clarity. It gave me clarity about what was important, what was good in my life, what was toxic in my life, and what I needed to do.” Click below to read more of KaCrole’s story |
If Landon Ryan had been diagnosed with bilateral retinoblastoma 10, 20 or 30 years ago, she might not be here today with nearly perfect vision.Thanks to recent improvements in the treatment for this rare form of cancer that almost exclusively affects children under the age of 5, the diagnosis had the power to change Landon’s life when she was 11 months old, but not to take it — or her eyesight. Click below to learn more about Landon and her story. https://momentum.vicc.org/2022/04/brighter-outlook/ |
A Phase 3, Randomized, Open-Label Study to Compare the Efficacy and Safety of Anitocabtagene Autoleucel Versus Standard of Care Therapy in Participants With Relapsed/Refractory Multiple Myeloma
Not Available
III
Biltibo, Eden
NCT06413498
VICC-DTCTT23578
An International, Prospective, Open-label, Multi-Center, Randomized Phase III Study comparing Lutetium (177Lu) Vipivotide Tetraxetan (AAA617) versus Observation to Delay Castration or Disease Recurrence in Adult Male Patients with Prostate-Specific Membrane Antigen (PSMA) Positive Oligometastatic Prostate Cancer (OMPC)
Not Available
III
Schaffer, Kerry
NCT05939414
VICC-DTURO23342
Phase III Trial of Single Fraction Stereotactic Radiosurgery (SRS) versus Fractionated SRS (FSRS) for Intact Brain Metastases
Not Available
III
Cmelak, Anthony
NCT06500455
NRGNEUBN013
A Study of Tucatinib With Trastuzumab and mFOLFOX6 Versus Standard of Care Treatment in First-line HER2+ Metastatic Colorectal Cancer
This study is being done to find out if tucatinib with other cancer drugs works better than
standard of care to treat participants with HER2 positive colorectal cancer. This study will
also test what side effects happen when participants take this combination of drugs. A side
effect is anything a drug does to the body besides treating your disease.
Participants in this study have colorectal cancer that has spread through the body
(metastatic) and/or cannot be removed with surgery (unresectable).
Participants will be assigned randomly to the tucatinib group or standard of care group. The
tucatinib group will get tucatinib, trastuzumab, and mFOLFOX6. The standard of care group
will get either:
- mFOLFOX6 alone,
- mFOLFOX6 with bevacizumab, or
- mFOLFOX6 with cetuximab mFOLFOX6 is a combination of multiple drugs. All of the drugs
given in this study are used to treat this type of cancer.
standard of care to treat participants with HER2 positive colorectal cancer. This study will
also test what side effects happen when participants take this combination of drugs. A side
effect is anything a drug does to the body besides treating your disease.
Participants in this study have colorectal cancer that has spread through the body
(metastatic) and/or cannot be removed with surgery (unresectable).
Participants will be assigned randomly to the tucatinib group or standard of care group. The
tucatinib group will get tucatinib, trastuzumab, and mFOLFOX6. The standard of care group
will get either:
- mFOLFOX6 alone,
- mFOLFOX6 with bevacizumab, or
- mFOLFOX6 with cetuximab mFOLFOX6 is a combination of multiple drugs. All of the drugs
given in this study are used to treat this type of cancer.
Not Available
III
Not Available
NCT05253651
VICC-DTGIT23052
Testing the Addition of Total Ablative Therapy to Usual Systemic Therapy Treatment for Limited Metastatic Colorectal Cancer, ERASur Trial
This phase III trial compares the addition of total ablative therapy to the usual systemic therapy versus the usual systemic therapy alone in treating patients with advanced colorectal cancer that has spread to up to 4 body sites (limited metastatic). The usual approach for patients who are not participating in a study is treatment with intravenous (through a vein) and/or oral medications (systemic therapy) to help stop the cancer sites from getting larger and the spread of the cancer to additional body sites. The ablative local therapy will consist of very focused, intensive radiotherapy called stereotactic ablative radiotherapy (SABR) with or without surgical resection and/or microwave ablation, which is a procedure where a needle is temporarily inserted in the tumor and heat is used to destroy the cancer cells. The addition of ablative local therapy to the usual approach of systemic therapy could be more effective than usual chemotherapy alone by increasing the life of patients with limited metastatic colorectal cancer.
Not Available
III
Not Available
NCT05673148
VICC-NTGIT23268
Inotuzumab Ozogamicin and Post-Induction Chemotherapy in Treating Patients with High-Risk B-ALL, Mixed Phenotype Acute Leukemia, and B-LLy
This phase III trial studies whether inotuzumab ozogamicin added to post-induction chemotherapy for patients with High-Risk B-cell Acute Lymphoblastic Leukemia (B-ALL) improves outcomes. This trial also studies the outcomes of patients with mixed phenotype acute leukemia (MPAL), and B-lymphoblastic lymphoma (B-LLy) when treated with ALL therapy without inotuzumab ozogamicin. Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a type of chemotherapy called calicheamicin. Inotuzumab attaches to cancer cells in a targeted way and delivers calicheamicin to kill them. Other drugs used in the chemotherapy regimen, such as cyclophosphamide, cytarabine, dexamethasone, doxorubicin, daunorubicin, methotrexate, leucovorin, mercaptopurine, prednisone, thioguanine, vincristine, and pegaspargase or calaspargase pegol work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial will also study the outcomes of patients with mixed phenotype acute leukemia (MPAL) and disseminated B lymphoblastic lymphoma (B-LLy) when treated with high-risk ALL chemotherapy.
The overall goal of this study is to understand if adding inotuzumab ozogamicin to standard of care chemotherapy maintains or improves outcomes in High Risk B-cell Acute Lymphoblastic Leukemia (HR B-ALL). The first part of the study includes the first two phases of therapy: Induction and Consolidation. This part will collect information on the leukemia, as well as the effects of the initial treatment, in order to classify patients into post-consolidation treatment groups. On the second part of this study, patients will receive the remainder of the chemotherapy cycles (interim maintenance I, delayed intensification, interim maintenance II, maintenance), with some patients randomized to receive inotuzumab. Other aims of this study include investigating whether treating both males and females with the same duration of chemotherapy maintains outcomes for males who have previously been treated for an additional year compared to girls, as well as to evaluate the best ways to help patients adhere to oral chemotherapy regimens. Finally, this study will be the first to track the outcomes of subjects with disseminated B-cell Lymphoblastic Leukemia (B-LLy) or Mixed Phenotype Acute Leukemia (MPAL) when treated with B-ALL chemotherapy.
The overall goal of this study is to understand if adding inotuzumab ozogamicin to standard of care chemotherapy maintains or improves outcomes in High Risk B-cell Acute Lymphoblastic Leukemia (HR B-ALL). The first part of the study includes the first two phases of therapy: Induction and Consolidation. This part will collect information on the leukemia, as well as the effects of the initial treatment, in order to classify patients into post-consolidation treatment groups. On the second part of this study, patients will receive the remainder of the chemotherapy cycles (interim maintenance I, delayed intensification, interim maintenance II, maintenance), with some patients randomized to receive inotuzumab. Other aims of this study include investigating whether treating both males and females with the same duration of chemotherapy maintains outcomes for males who have previously been treated for an additional year compared to girls, as well as to evaluate the best ways to help patients adhere to oral chemotherapy regimens. Finally, this study will be the first to track the outcomes of subjects with disseminated B-cell Lymphoblastic Leukemia (B-LLy) or Mixed Phenotype Acute Leukemia (MPAL) when treated with B-ALL chemotherapy.
Not Available
III
Not Available
NCT03959085
COGAALL1732
A Study to Compare Standard Chemotherapy to Therapy with CPX-351 and/or Gilteritinib for Patients with Newly Diagnosed AML with or without FLT3 Mutations
This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
Not Available
III
Not Available
NCT04293562
COGAAML1831
Long-term Safety and Efficacy Extension Study for Participants With Advanced Tumors Who Are Currently on Treatment or in Follow-up in a Pembrolizumab (MK-3475) Study (MK-3475-587/KEYNOTE-587)
The purpose of this study is to evaluate the long-term safety and efficacy of pembrolizumab
(MK-3475) in participants from previous Merck pembrolizumab-based parent studies who
transition into this extension study.
This study will consist of three phases: 1) First Course Phase, 2) Survival Follow-up Phase
or 3) Second Course Phase. Each participant will transition to this extension study in one of
the following three phases, depending on the study phase they were in at the completion of
the parent study. Participants who were in the First Course Phase of study treatment with
pembrolizumab or lenvatinib in their parent study will enter the First Course Phase of this
study and complete up to 35 doses or more every 3 weeks (Q3W) or 17 doses or more every 6
weeks (Q6W) of study treatment with pembrolizumab or a pembrolizumab-based combination or
lenvatinib according to arm assignment. Participants who were in the Follow-up Phase in the
parent study (post-treatment or Survival Follow-up Phase) will enter the Survival Follow-up
Phase of this study. Participants who were in the Second Course Phase in their parent study
will enter Second Course Phase of this study and complete up to 17 doses Q3W or 8 doses Q6W
of study treatment with pembrolizumab or a pembrolizumab-based combination according to arm
assignment.
Any participant originating from a parent trial where crossover to pembrolizumab was
permitted upon disease progression may be eligible for 35 doses as Q3W or 17 doses Q6W of
pembrolizumab (approximately 2 years), if they progress while on the control arm and
pembrolizumab is approved for the indication in the country where the potential eligible
crossover participant is being evaluated.
(MK-3475) in participants from previous Merck pembrolizumab-based parent studies who
transition into this extension study.
This study will consist of three phases: 1) First Course Phase, 2) Survival Follow-up Phase
or 3) Second Course Phase. Each participant will transition to this extension study in one of
the following three phases, depending on the study phase they were in at the completion of
the parent study. Participants who were in the First Course Phase of study treatment with
pembrolizumab or lenvatinib in their parent study will enter the First Course Phase of this
study and complete up to 35 doses or more every 3 weeks (Q3W) or 17 doses or more every 6
weeks (Q6W) of study treatment with pembrolizumab or a pembrolizumab-based combination or
lenvatinib according to arm assignment. Participants who were in the Follow-up Phase in the
parent study (post-treatment or Survival Follow-up Phase) will enter the Survival Follow-up
Phase of this study. Participants who were in the Second Course Phase in their parent study
will enter Second Course Phase of this study and complete up to 17 doses Q3W or 8 doses Q6W
of study treatment with pembrolizumab or a pembrolizumab-based combination according to arm
assignment.
Any participant originating from a parent trial where crossover to pembrolizumab was
permitted upon disease progression may be eligible for 35 doses as Q3W or 17 doses Q6W of
pembrolizumab (approximately 2 years), if they progress while on the control arm and
pembrolizumab is approved for the indication in the country where the potential eligible
crossover participant is being evaluated.
Not Available
III
Not Available
NCT03486873
VICCMD1932
Combining Radiation Therapy with Immunotherapy for the Treatment of Metastatic Squamous Cell Carcinoma of the Head and Neck
This phase III trial compares pembrolizumab with radiation therapy to pembrolizumab without radiation therapy (standard therapy) given after pembrolizumab plus chemotherapy for the treatment of patients with squamous cell carcinoma of the head and neck that has spread from where it first started (primary site) to other places in the body (metastatic). Pembrolizumab is a type of immunotherapy that stimulates the body's immune system to fight cancer cells. Pembrolizumab targets and blocks a protein called PD-1 on the surface of certain immune cells called T-cells. Blocking PD-1 triggers the T-cells to find and kill cancer cells. Radiation therapy uses high-powered rays to kill cancer cells. Giving radiation with pembrolizumab may be more effective at treating patients with metastatic head and neck cancer than the standard therapy of giving pembrolizumab alone.
Not Available
III
Choe, Jennifer
NCT05721755
ECOGHNEA3211