Skip to main content

Displaying 21 - 30 of 98

Evaluating 111In Panitumumab for Nodal Staging in Head and Neck Cancer

Multiple Cancer Types

This phase I trial tests the safety and effectiveness of indium In 111 panitumumab (111In-panitumumab) for identifying the first lymph nodes to which cancer has spread from the primary tumor (sentinel lymph nodes) in patients with head and neck squamous cell carcinoma (HNSCC) undergoing surgery. The most important factor for survival for many cancer types is the presence of cancer that has spread to the lymph nodes (metastasis). Lymph node metastases in patients with head and neck cancer reduce the 5-year survival by half. Sometimes, the disease is too small to be found on clinical and imaging exams before surgery. 111In-panitumumab is in a class of medications called radioimmunoconjugates. It is composed of a radioactive substance (indium In 111) linked to a monoclonal antibody (panitumumab). Panitumumab binds to EGFR receptors, a receptor that is over-expressed on the surface of many tumor cells and plays a role in tumor cell growth. Once 111In-panitumumab binds to tumor cells, it is able to be seen using an imaging technique called single photon emission computed tomography/computed tomography (SPECT/CT). SPECT/CT can be used to make detailed pictures of the inside of the body and to visualize areas where the radioactive drug has been taken up by the cells. Using 111In-panitumumab with SPECT/CT imaging may improve identification of sentinel lymph nodes in patients with head and neck squamous cell cancer undergoing surgery.
Head/Neck, Phase I
I
Rosenthal, Eben
NCT05901545
VICC-EDHAN23201P

Pembrolizumab vs. Observation in People With Triple-negative Breast Cancer Who Had a Pathologic Complete Response After Chemotherapy Plus Pembrolizumab

Breast

The phase III trial compares the effect of pembrolizumab to observation for the treatment of patients with early-stage triple-negative breast cancer who achieved a pathologic complete response after preoperative chemotherapy in combination with pembrolizumab. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial may help researchers determine if observation will result in the same risk of cancer coming back as pembrolizumab after surgery in triple-negative breast cancer patients who achieve pathologic complete response after preoperative chemotherapy with pembrolizumab.
Breast
III
Abramson, Vandana
NCT05812807
VICC-NTBRE23357

Neoadjuvant Darolutamide Alone or in Combination With Standard Therapy for Stage II-IIIA, AR+, TNBC

Breast

This phase II trial compares the effect of adding darolutamide to standard therapy versus standard therapy alone before surgery for the treatment of patients with stage II-IIIA androgen receptor positive triple-negative breast carcinoma. Standard therapy before surgery for triple-negative breast cancer typically consists of a combination of chemotherapy and immunotherapy drugs. Chemotherapy drugs, such as carboplatin, paclitaxel, doxorubicin and cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Darolutamide is in a class of medications called androgen receptor inhibitors. It works by blocking the effects of androgen (a male reproductive hormone) to stop the growth and spread of tumor cells. Giving darolutamide in combination with standard therapy before surgery may make the tumor smaller and may reduce the amount of normal tissue that needs to be removed.
Breast
II
Abramson, Vandana
NCT07016399
VICC-VCBRE23490

Targeted Alpha-Particle Therapy for Advanced Somatostatin Receptor Type 2 (SSTR2) Positive Neuroendocrine Tumors

Multiple Cancer Types

This study is Phase I/IIa First-in-Human Study of \[212Pb\]VMT--NET Targeted Alpha-Particle Therapy for Advanced SSTR2 Positive Neuroendocrine Tumors
Neuroendocrine, Phase I
I/II
Ramirez, Robert
NCT05636618
VICC-DTPHI23045

Inotuzumab Ozogamicin in Treating Younger Patients With B-Lymphoblastic Lymphoma or Relapsed or Refractory CD22 Positive B Acute Lymphoblastic Leukemia

This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
Not Available
II
Not Available
NCT02981628
COGAALL1621

Study Assessing Activity of Intravenous (IV) Etentamig Monotherapy Versus Standard Available Therapies in Adult Participants With Relapsed or Refractory Multiple Myeloma

Multiple myeloma (MM) is a cancer of the blood's plasma cells. The cancer is typically found in the bones and bone marrow (the spongy tissue inside of the bones) and can cause bone pain, fractures, infections, weaker bones, and kidney failure. Treatments are available, but MM can come back (relapsed) or may not get better (refractory) with treatment. This is a study to determine change in disease symptoms of etentamig compared to standard available therapies in adult participants with relapsed/refractory (R/R) MM.

Etentamig is an investigational drug being developed for the treatment of R/R MM. This study is broken into 2 Arms; Arm A and Arm B. In Arm A, participants will receive etentamig as a monotherapy. In Arm B, participants will receive the standard available therapy (SAT) identified by the Investigator during screening, in accordance with the local (or applicable) approved label, package insert, summary of product characteristics, and/or the institutional guidelines, as applicable. Around 380 adult participants with relapsed/refractory multiple myeloma will be enrolled at approximately 140 sites across the world.

In Arm A participants will receive etentamig as an infusion into the vein in 28 day cycles, during the 3.5 year study duration. In Arm B, participants will receive the SAT identified by the Investigator during screening, in accordance with the local (or applicable) approved label, package insert, summary of product characteristics, and/or the institutional guidelines, as applicable, during the 3.5 year study duration.

There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic. The effect of the treatment will be checked by medical assessments, blood tests, checking for side effects and questionnaires.
Not Available
III
Baljevic, Muhamed
NCT06158841
VICC-DTPCL23493

Comparing the Combination of Selinexor-Daratumumab-Velcade-Dexamethasone (Dara-SVD) With the Usual Treatment (Dara-RVD) for High-Risk Newly Diagnosed Multiple Myeloma

This phase II trial compares the combination of selinexor, daratumumab and hyaluronidase-fihj (daratumumab), velcade (bortezomib), and dexamethasone (Dara-SVD) to the usual treatment of daratumumab, lenalidomide, bortezomib, and dexamethasone (Dara-RVD) in treating patients with high-risk newly diagnosed multiple myeloma. Selinexor is in a class of medications called selective inhibitors of nuclear export (SINE). It works by blocking a protein called CRM1, which may keep cancer cells from growing and may kill them. Daratumumab is in a class of medications called monoclonal antibodies. It binds to a protein called CD38, which is found on some types of immune cells and cancer cells, including myeloma cells. Daratumumab may block CD38 and help the immune system kill cancer cells. Bortezomib blocks several molecular pathways in a cell and may cause cancer cells to die. It is a type of proteasome inhibitor and a type of dipeptidyl boronic acid. Dexamethasone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Lenalidomide is in a class of medications called immunomodulatory agents. It works by helping the bone marrow to produce normal blood cells and by killing abnormal cells in the bone marrow. The drugs daratumumab, lenalidomide, bortezomib, dexamethasone and selinexor are already approved by the Food and Drug Administration for use in myeloma. But selinexor is not used until myeloma comes back (relapses) after initial treatment. Giving selinexor in the initial treatment may be a superior type of treatment for patients with high-risk newly diagnosed multiple myeloma.
Not Available
II
Baljevic, Muhamed
NCT06169215
VICC-NTPCL23525

Comparing Sentinel Lymph Node (SLN) Biopsy With Standard Neck Dissection for Patients With Early-Stage Oral Cavity Cancer

Head/Neck

This phase II/III trial studies how well sentinel lymph node biopsy works and compares sentinel lymph node biopsy surgery to standard neck dissection as part of the treatment for early-stage oral cavity cancer. Sentinel lymph node biopsy surgery is a procedure that removes a smaller number of lymph nodes from your neck because it uses an imaging agent to see which lymph nodes are most likely to have cancer. Standard neck dissection, such as elective neck dissection, removes many of the lymph nodes in your neck. Using sentinel lymph node biopsy surgery may work better in treating patients with early-stage oral cavity cancer compared to standard elective neck dissection.
Head/Neck
II/III
Topf, Michael
NCT04333537
NRGHN006

Biomarker Platform (Virtual Nodule Clinic) for the Management of Indeterminate Pulmonary Nodules

Lung

This clinical trial studies whether a biomarker platform, the Virtual Nodule Clinic, can be used for the management of lung (pulmonary) nodules that are not clearly non-cancerous (benign) or clearly cancerous (malignant) (indeterminate pulmonary nodules \[IPNs\]). The management of IPNs is based on estimating the likelihood that the observed nodule is malignant. Many things, such as age, smoking history, and current symptoms, are considered when making a prediction of the likelihood of malignancy. Radiographic imaging characteristics are also considered. Lung nodule management for IPNs can result in unnecessary invasive procedures for nodules that are ultimately determined to be benign, or potential delays in treatment when results of tests cannot be determined or are falsely negative. The Virtual Nodule Clinic is an artificial intelligence (AI) based imaging software within the electronic health record which makes certain that identified pulmonary nodules are screened by clinicians with expertise in nodule management. The Virtual Nodule Clinic also features an AI based radiomic prediction score which designates the likelihood that a pulmonary nodule is malignant. This may improve the ability to manage IPNs and lower unnecessary invasive procedures or treatment delays. Using the Virtual Nodule Clinic may work better for the management of IPNs.
Lung
N/A
Maldonado, Fabien
NCT06638398
VICC-IDTHO24059

Phase 1 Study of MRTX1719 in Solid Tumors With MTAP Deletion

This is a Phase 1, open-label, multicenter, study of the safety, tolerability, PK, PD, and anti-tumor activity of MRTX1719 patients with advanced, unresectable or metastatic solid tumor malignancy with homozygous deletion of the MTAP gene.
Not Available
I/II
Davis, Elizabeth
NCT05245500
VICC-DTPHI23101P