Clinical Trials Search at Vanderbilt-Ingram Cancer Center
A Study of E7386 in Combination With Other Anticancer Drug(s) in Participants With Solid Tumor
Multiple Cancer Types
The primary objective of this study is to assess the safety and tolerability and to determine the recommended Phase 2 dose (RP2D) of E7386 in combination with other anticancer drug(s), and to determine the optimal dose of E7386 in combination with lenvatinib in endometrial carcinoma (EC) (for EC Dose Optimization Part only).
Gynecologic,
Liver,
Phase I
I
Crispens, Marta
NCT04008797
VICC-DTPHI23106
A Study of Lower Radiotherapy Dose to Treat Children With CNS Germinoma
This phase II trial studies how well lower dose radiotherapy after chemotherapy (Carboplatin \& Etoposide) works in treating children with central nervous system (CNS) germinomas. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill cancer cells. Researchers want to see if lowering the dose of standard radiotherapy (RT) after chemotherapy can help get rid of CNS germinomas with fewer long-term side effects.
Not Available
II
Esbenshade, Adam
NCT06368817
COGACNS2321
A Study of CBX-250 in Participants With Acute Myeloid Leukemia, High-Risk Myelodysplastic Syndrome or Chronic Myelomonocytic Leukemia
Multiple Cancer Types
Study CBX-250-001 is a Phase 1, open-label, dose-escalation study of CBX-250 in participants with relapsed/refractory AML, HR-MDS and CMML. Participants aged 12 years are planned to be enrolled. CBX-250 will initially be investigated on a fixed step-up dosing schedule. CBX-250 will be administered subcutaneously in 28-day cycles, with the first study drug dose administered on Cycle 1, Day 1. Cycle 1 will consist of a priming phase over 7 days, and a target phase over 28 days. Participants will continue CBX-250 until progressive disease (PD) or unacceptable toxicity. All subsequent treatment cycles will be 28 days.
Leukemia,
Myelodysplastic Syndrome
I
Ball, Somedeb
NCT06994676
VICCHEMP25017
Study of LY3537982 in Cancer Patients With a Specific Genetic Mutation (KRAS G12C)
The purpose of this study is to find out whether the study drug, LY3537982, is safe and effective in cancer patients who have a specific genetic mutation (KRAS G12C). Patients must have already received or were not able to tolerate the standard of care, except for specific groups who have not had cancer treatment. The study will last up to approximately 4 years.
Not Available
I/II
Not Available
NCT04956640
VICCTHOP2155
Gene Signatures to Guide HR+MBC Therapy in a Diverse Cohort
Breast
Breast
This is an open-label, multicenter, two-arm Phase II clinical trial that will evaluate the impact of 2nd line chemotherapy (i.e. capecitabine) on survival in patients with non-Luminal A hormone receptor-positive (HR+) metastatic breast cancer (MBC)
Breast
II
Reid, Sonya
NCT05693766
VICCBRE2256
Eltanexor and Venetoclax in Relapsed or Refractory Myelodysplastic Syndrome and Acute Myeloid Leukemia
Multiple Cancer Types
This phase I trial tests the safety, side effects, and best dose of eltanexor in combination with venetoclax for the treatment of patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Eltanexor works by trapping "tumor suppressing proteins" within the cell, thus causing the cancer cells to die or stop growing. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving eltanexor together with venetoclax may be safe, tolerable and/or effective in treating patients with relapsed or refractory MDS or AML.
Leukemia,
Myelodysplastic Syndrome,
Phase I
I
Ball, Somedeb
NCT06399640
VICC-VCHEM23008P
Testing the Addition of Anti-Cancer Drug, ZEN003694 (ZEN-3694) and PD-1 Inhibitor (Pembrolizumab), to Standard Chemotherapy (Nab-Paclitaxel) Treatment in Patients With Advanced Triple-Negative Breast Cancer
Multiple Cancer Types
This phase Ib trial tests the safety and tolerability of ZEN003694 in combination with an immunotherapy drug called pembrolizumab and the usual chemotherapy approach with nab-paclitaxel for the treatment of patients with triple negative-negative breast cancer that has spread to other parts of the body (advanced). Paclitaxel is in a class of medications called antimicrotubule agents. It stops cancer cells from growing and dividing and may kill them. Nab-paclitaxel is an albumin-stabilized nanoparticle formulation of paclitaxel which may have fewer side effects and work better than other forms of paclitaxel. Immunotherapy with monoclonal antibodies, such as pembrolizumab may help the body's immune system attach the cancer and may interfere with the ability of tumor cells to grow and spread. ZEN003694 is an inhibitor of a family of proteins called the bromodomain and extra-terminal (BET). It may prevent the growth of tumor cells that over produce BET protein. Combination therapy with ZEN003694 pembrolizumab immunotherapy and nab-paclitaxel chemotherapy may help shrink or stabilize cancer for longer than chemotherapy alone.
Breast,
Phase I
I
Abramson, Vandana
NCT05422794
NCIBREP10525
Phase 1 Study of MRTX1719 in Solid Tumors With MTAP Deletion
This is a Phase 1, open-label, multicenter, study of the safety, tolerability, PK, PD, and anti-tumor activity of MRTX1719 patients with advanced, unresectable or metastatic solid tumor malignancy with homozygous deletion of the MTAP gene.
Not Available
I/II
Davis, Elizabeth
NCT05245500
VICC-DTPHI23101P
A Study Evaluating the Efficacy and Safety of Multiple Treatment Combinations in Patients With Metastatic or Locally Advanced Breast Cancer
Multiple Cancer Types
This is an umbrella study evaluating the efficacy and safety of multiple treatment combinations in participants with metastatic or inoperable locally advanced breast cancer.
The study will be performed in two stages. During Stage 1, four cohorts will be enrolled in parallel in this study:
Cohort 1 will consist of Programmed death-ligand 1 (PD-L1)-positive participants who have received no prior systemic therapy for metastatic or inoperable locally advanced triple-negative breast cancer (TNBC) (first-line \[1L\] PD-L1+ cohort).
Cohort 2 will consist of participants who had disease progression during or following 1L treatment with chemotherapy for metastatic or inoperable locally-advanced TNBC and have not received cancer immunotherapy (CIT) (second-line \[2L\] CIT-naive cohort).
Cohort 3 will consist of participants with locally-advanced or metastatic HR+, HER2-negative disease with PIK3CA mutation who may or may not have had disease progression during or following previous lines of treatment for metastatic disease (HR+cohort).
Cohort 4 will consist of participants with locally-advanced or metastatic HER2+ /HER2-low disease with PIK3CA mutation who had disease progression on standard-of-care therapies (HER2+ /HER2-low cohort).
In each cohort, eligible participants will initially be assigned to one of several treatment arms (Stage 1). In addition, participants in the 2L CIT-nave cohort who experience disease progression, loss of clinical benefit, or unacceptable toxicity during Stage 1 may be eligible to continue treatment with a different treatment combination (Stage 2), provided Stage 2 is open for enrollment.
The study will be performed in two stages. During Stage 1, four cohorts will be enrolled in parallel in this study:
Cohort 1 will consist of Programmed death-ligand 1 (PD-L1)-positive participants who have received no prior systemic therapy for metastatic or inoperable locally advanced triple-negative breast cancer (TNBC) (first-line \[1L\] PD-L1+ cohort).
Cohort 2 will consist of participants who had disease progression during or following 1L treatment with chemotherapy for metastatic or inoperable locally-advanced TNBC and have not received cancer immunotherapy (CIT) (second-line \[2L\] CIT-naive cohort).
Cohort 3 will consist of participants with locally-advanced or metastatic HR+, HER2-negative disease with PIK3CA mutation who may or may not have had disease progression during or following previous lines of treatment for metastatic disease (HR+cohort).
Cohort 4 will consist of participants with locally-advanced or metastatic HER2+ /HER2-low disease with PIK3CA mutation who had disease progression on standard-of-care therapies (HER2+ /HER2-low cohort).
In each cohort, eligible participants will initially be assigned to one of several treatment arms (Stage 1). In addition, participants in the 2L CIT-nave cohort who experience disease progression, loss of clinical benefit, or unacceptable toxicity during Stage 1 may be eligible to continue treatment with a different treatment combination (Stage 2), provided Stage 2 is open for enrollment.
Breast,
Phase I
I/II
Kennedy, Laura
NCT03424005
VICCBREP2126
Phase I/II Trial in ES-SCLC to Enhance Response to Atezolizumab Plus Chemotherapy With Total Body Irradiation
Multiple Cancer Types
This phase I/II trial studies the side effects, safety, and effectiveness of low dose radiation to the entire body (total body irradiation \[TBI\]) and higher dose radiation to known areas of cancer (hypofractionated radiation therapy \[H-RT\]) combined with atezolizumab and chemotherapy (carboplatin \& etoposide) in treating patients with small cell lung cancer that has spread to disease sites outside of the lung (extensive stage). Extensive stage disease has historically been treated with chemotherapy alone with consideration of chest (thoracic) radiation therapy for those with response to chemotherapy, as well as consideration of preventative radiation therapy to the head (prophylactic cranial irradiation). Emerging evidence supports the synergistic interactions between immunotherapy and radiation therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill tumor cells. Combining TBI and H-RT with atezolizumab and chemotherapy may improve response to treatment.
Lung,
Small Cell
I/II
Osmundson, Evan
NCT06110572
VICCTHOP2206