Clinical Trials Search at Vanderbilt-Ingram Cancer Center
A Global Study of Volrustomig (MEDI5752) for Participants With Unresected Locally Advanced Head and Neck Squamous Cell Carcinoma Following Definitive Concurrent Chemoradiotherapy
The main purpose of this study is to assess the efficacy and safety of volrustomig compared
to observation in participants with unresected locally advanced head and neck squamous cell
carcinoma (LA-HNSCC) who have not progressed after receiving definitive concurrent
chemoradiotherapy (cCRT).
to observation in participants with unresected locally advanced head and neck squamous cell
carcinoma (LA-HNSCC) who have not progressed after receiving definitive concurrent
chemoradiotherapy (cCRT).
Not Available
III
Choe, Jennifer
NCT06129864
VICC-DTHAN24071
Heated Intraperitoneal Chemotherapy Followed by Niraparib for Ovarian, Primary Peritoneal and Fallopian Tube Cancer
Ovarian
Ovarian
Patients will be registered prior to, during or at the completion of neoadjuvant chemotherapy
(Paclitaxel 175 mg/m2 IV over 3 hours and Carboplatin AUC 6 IV on Day 1 every 21 days for 3-4
cycles). Registered patients who progress during neoadjuvant chemotherapy will not be
eligible for iCRS and will be removed from the study.
Following completion of neoadjuvant chemotherapy, interval cytoreductive surgery (iCRS) will
be performed in the usual fashion in both arms. Patients will be randomized at the time of
iCRS (iCRS must achieve no gross residual disease or no disease >1.0 cm in largest diameter)
to receive HIPEC or no HIPEC. Patients randomized to HIPEC (Arm A) will receive a single dose
of cisplatin (100mg/m2 IP over 90 minutes at 42 C) as HIPEC. After postoperative recovery
patients will receive standard post-operative platinum-based combination chemotherapy.
Patients randomized to surgery only (Arm B) will receive postoperative standard chemotherapy
after recovery from surgery.
Both groups will receive an additional 2-3 cycles of platinum-based combination chemotherapy
per institutional standard (Paclitaxel 175 mg/m2 IV over 3 hours and Carboplatin AUC 6 IV on
Day 1 every 21 days for 2-3 cycles) for a maximum total of 6 cycles of chemotherapy
(neoadjuvant plus post-operative cycles) followed by niraparib individualized dosing until
progression or 36 months (if no evidence of disease).
(Paclitaxel 175 mg/m2 IV over 3 hours and Carboplatin AUC 6 IV on Day 1 every 21 days for 3-4
cycles). Registered patients who progress during neoadjuvant chemotherapy will not be
eligible for iCRS and will be removed from the study.
Following completion of neoadjuvant chemotherapy, interval cytoreductive surgery (iCRS) will
be performed in the usual fashion in both arms. Patients will be randomized at the time of
iCRS (iCRS must achieve no gross residual disease or no disease >1.0 cm in largest diameter)
to receive HIPEC or no HIPEC. Patients randomized to HIPEC (Arm A) will receive a single dose
of cisplatin (100mg/m2 IP over 90 minutes at 42 C) as HIPEC. After postoperative recovery
patients will receive standard post-operative platinum-based combination chemotherapy.
Patients randomized to surgery only (Arm B) will receive postoperative standard chemotherapy
after recovery from surgery.
Both groups will receive an additional 2-3 cycles of platinum-based combination chemotherapy
per institutional standard (Paclitaxel 175 mg/m2 IV over 3 hours and Carboplatin AUC 6 IV on
Day 1 every 21 days for 2-3 cycles) for a maximum total of 6 cycles of chemotherapy
(neoadjuvant plus post-operative cycles) followed by niraparib individualized dosing until
progression or 36 months (if no evidence of disease).
Ovarian
III
Crispens, Marta
NCT05659381
VICC-DTGYN23355
Adding Nivolumab to Usual Treatment for People with Advanced Stomach or Esophageal Cancer, The PARAMMUNE Trial
This phase II/III trial compares the addition of nivolumab to the usual treatment of paclitaxel and ramucirumab to paclitaxel and ramucirumab alone in treating patients with gastric or esophageal adenocarcinoma that that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Ramucirumab is a monoclonal antibody that may prevent the growth of new blood vessels that tumors need to grow. Paclitaxel is in a class of medications called antimicrotubule agents. It stops cancer cells from growing and dividing and may kill them. Adding nivolumab to ramucirumab and paclitaxel may work better to treat patients with advanced stomach or esophageal cancer.
Not Available
II/III
Agarwal, Rajiv
NCT06203600
SWOGGIS2303
Comparing the Combination of Selinexor-Daratumumab-Velcade-Dexamethasone (Dara-SVD) with the Usual Treatment (Dara-RVD) for High-Risk Newly Diagnosed Multiple Myeloma
This phase II trial compares the combination of selinexor, daratumumab, Velcade (bortezomib), and dexamethasone (Dara-SVD) to the usual treatment of daratumumab, lenalidomide, bortezomib, and dexamethasone (Dara-RVD) in treating patients with high-risk newly diagnosed multiple myeloma. Selinexor is in a class of medications called selective inhibitors of nuclear export (SINE). It works by blocking a protein called CRM1, which may keep cancer cells from growing and may kill them. Daratumumab is in a class of medications called monoclonal antibodies. It binds to a protein called CD38, which is found on some types of immune cells and cancer cells, including myeloma cells. Daratumumab may block CD38 and help the immune system kill cancer cells. Bortezomib blocks several molecular pathways in a cell and may cause cancer cells to die. It is a type of proteasome inhibitor and a type of dipeptidyl boronic acid. Dexamethasone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Lenalidomide is in a class of medications called immunomodulatory agents. It works by helping the bone marrow to produce normal blood cells and by killing abnormal cells in the bone marrow. The drugs daratumumab, lenalidomide, bortezomib, dexamethasone and selinexor are already approved by the FDA for use in myeloma. But selinexor is not used until myeloma comes back (relapses) after initial treatment. Giving selinexor in the initial treatment may be a superior type of treatment for patients with high-risk newly diagnosed multiple myeloma.
Not Available
II
Baljevic, Muhamed
NCT06169215
VICC-NTPCL23525
Study of Lurbinectedin in Combination With Doxorubicin Versus Doxorubicin Alone as First-line Treatment in Participants With Metastatic Leiomyosarcoma
The primary objective of this phase IIb/III study is to evaluate whether the combination of
lurbinectedin plus doxorubicin given as first line treatment for metastatic leiomyosarcoma
(LMS) prolongs the progression-free survival (PFS) by Independent Review Committee (IRC) when
compared to doxorubicin administered as a single agent.
lurbinectedin plus doxorubicin given as first line treatment for metastatic leiomyosarcoma
(LMS) prolongs the progression-free survival (PFS) by Independent Review Committee (IRC) when
compared to doxorubicin administered as a single agent.
Not Available
II/III
Not Available
NCT06088290
VICC-DTSAR23232
Testing the Use of Neratinib or the Combination of Neratinib and Palbociclib Targeted Treatment for HER2+ Solid Tumors (A ComboMATCH Treatment Trial)
This phase II ComboMATCH treatment trial compares the effect of neratinib to the combination of neratinib and palbociclib in treating patients with HER2 positive solid tumors. Neratinib and palbociclib are in a class of medications called kinase inhibitors. They work by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of tumor cells. Giving neratinib and palbociclib in combination may shrink or stabilize cancers that over-express a specific biomarker called HER2.
Not Available
II
Choe, Jennifer
NCT06126276
ECOGMDEAY191-N5
A Study Using a New Drug, Nivolumab, in Combination with Chemotherapy Drugs to Treat a Type of Cancer Called Nasopharyngeal Carcinoma (NPC)
This phase II trial tests how well nivolumab in combination with chemotherapy drugs along with radiation therapy works in treating patients with nasopharyngeal cancer. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as gemcitabine and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Researchers want to find out what effects, good and/or bad, adding nivolumab to chemotherapy has on patients with newly diagnosed NPC. In addition, they want to find out if children with NPC may be treated with less radiation therapy and whether this decreases the side effects of therapy.
Not Available
II
Not Available
NCT06064097
VICC-NTPED24105
Genetic Testing to Select Therapy for the Treatment of Advanced or Metastatic Kidney Cancer, OPTIC RCC Study
Kidney (Renal Cell)
Kidney (Renal Cell)
This phase II trial tests whether using genetic testing of tumor tissue to select the optimal treatment regimen works in treating patients with clear cell renal cell (kidney) cancer that has spread to other places in the body (advanced or metastatic). The current Food and Drug Administration (FDA)-approved regimens for advanced kidney cancer fall into two categories. One treatment combination includes two immunotherapy drugs (nivolumab plus ipilimumab), which are delivered by separate intravenous infusions into a vein. The other combination is one immunotherapy drug (nivolumab infusion) plus an oral pill taken by mouth (cabozantinib). Nivolumab and ipilimumab are immunotherapies which release the brakes of the immune system, thus allowing the patient's own immune system to better kill cancer cells. Cabozantinib is a targeted therapy specifically designed to block certain biological mechanisms needed for growth of cancer cells. In kidney cancer, cabozantinib blocks a tumors blood supply. The genetic (DNA) makeup of the tumor may affect how well it responds to therapy. Testing the makeup (genes) of the tumor, may help match a treatment (from one of the above two treatment options) to the specific cancer and increase the chance that the disease will respond to treatment. The purpose of this study is to learn if genetic testing of tumor tissue may help doctors select the optimal treatment regimen to which advanced kidney cancer is more likely to respond.
Kidney (Renal Cell)
II
Rini, Brian
NCT05361720
VICCURO21103
Loncastuximab Tesirine for the Treatment of Relapsed or Refractory Marginal Zone Lymphoma
Lymphoma
Lymphoma
This phase II trial tests whether loncastuximab tesirine works to shrink tumors in patients with marginal zone lymphoma (MZL), a type of immune cell cancer, that has come back (relapsed) or become unresponsive to one or more treatments (refractory). Loncastuximab tesirine is composed of an antibody, called loncastuximab linked to a chemotherapy drug called tesirine. Loncastuximab attaches to specific proteins in the cancer cell and delivers tesirine only to the cancer cells because of this antibody. Ultimately this results in cancer cell death only without exposing normal cells to the tesirine.
Lymphoma
II
Oluwole, Olalekan
NCT05296070
VICC-ITCTT23024
Testing the Addition of Anti-Cancer Drug, ZEN003694 (ZEN-3694) and PD-1 inhibitor (Pembrolizumab), to Standard Chemotherapy (Nab-Paclitaxel) Treatment in Patients with Advanced Triple-Negative Breast Cancer
Multiple Cancer Types
This phase Ib trial tests the safety and tolerability of ZEN003694 in combination with an immunotherapy drug called pembrolizumab and the usual chemotherapy approach with nab-paclitaxel for the treatment of patients with triple negative-negative breast cancer that has spread to other parts of the body (advanced). Paclitaxel is in a class of medications called antimicrotubule agents. It stops cancer cells from growing and dividing and may kill them. Nab-paclitaxel is an albumin-stabilized nanoparticle formulation of paclitaxel which may have fewer side effects and work better than other forms of paclitaxel. Immunotherapy with monoclonal antibodies, such as pembrolizumab may help the body's immune system attach the cancer and may interfere with the ability of tumor cells to grow and spread. ZEN003694 is an inhibitor of a family of proteins called the bromodomain and extra-terminal (BET). It may prevent the growth of tumor cells that over produce BET protein. Combination therapy with ZEN003694 pembrolizumab immunotherapy and nab-paclitaxel chemotherapy may help shrink or stabilize cancer for longer than chemotherapy alone.
Breast,
Phase I
I
Abramson, Vandana
NCT05422794
NCIBREP10525