Clinical Trials Search at Vanderbilt-Ingram Cancer Center
A Randomized, Phase 2/3 Study to Investigate the Efficacy and Safety of RP2 in Combination With Nivolumab in Immune Checkpoint Inhibitor-Nave Adult Patients With Metastatic Uveal Melanoma
Melanoma
Melanoma
The purpose of this study is to measure the clinical benefits of the combination of RP2 and nivolumab as compared with the combination of nivolumab and ipilimumab in patients with metastatic uveal melanoma who have not been treated with immune checkpoint inhibitor therapy.
Melanoma
II/III
Johnson, Douglas
NCT06581406
VICC-DTMEL24090
Long-term Follow-up Study for Participants of Kite-Sponsored Interventional Studies Treated With Gene-Modified Cells
Multiple Cancer Types
The goal of this clinical study is to learn more about the long-term safety, effectiveness and prolonged action of Kite study drugs, axicabtagene ciloleucel, brexucabtagene autoleucel, KITE-363, KITE-753, KITE-197, and anitocabtagene autoleucel in participants of Kite-sponsored interventional studies.
Hematologic,
Leukemia,
Lymphoma,
Pediatric Leukemia,
Pediatric Lymphoma
N/A
Kassim, Adetola
NCT05041309
VICCCTT2170
Phase 1 Study of MRTX1719 in Solid Tumors With MTAP Deletion
This is a Phase 1, open-label, multicenter, study of the safety, tolerability, PK, PD, and anti-tumor activity of MRTX1719 patients with advanced, unresectable or metastatic solid tumor malignancy with homozygous deletion of the MTAP gene.
Not Available
I/II
Davis, Elizabeth
NCT05245500
VICC-DTPHI23101P
Avelumab With Binimetinib, Sacituzumab Govitecan, or Liposomal Doxorubicin in Treating Stage IV or Unresectable, Recurrent Triple Negative Breast Cancer
Breast
Breast
This phase II trial studies how well the combination of avelumab with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan works in treating patients with triple negative breast cancer that is stage IV or is not able to be removed by surgery (unresectable) and has come back (recurrent). Immunotherapy with checkpoint inhibitors like avelumab require activation of the patient's immune system.
This trial includes a two week induction or lead-in of medications that can stimulate the immune system. It is our hope that this induction will improve the response to immunotherapy with avelumab. One treatment, sacituzumab Govitecan, is a monoclonal antibody called sacituzumab linked to a chemotherapy drug called SN-38. Sacituzumab govitecan is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of tumor cells, known as Tumor-associated calcium signal transducer 2 (TROP2) receptors, and delivers SN-38 to kill them. Another treatment, liposomal doxorubicin, is a form of the anticancer drug doxorubicin that is contained in very tiny, fat-like particles. It may have fewer side effects and work better than doxorubicin, and may enhance factors associated with immune response. The third medication is called binimetinib, which may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth, and may help activate the immune system. It is not yet known whether giving avelumab in combination with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan will work better in treating patients with triple negative breast cancer.
This trial includes a two week induction or lead-in of medications that can stimulate the immune system. It is our hope that this induction will improve the response to immunotherapy with avelumab. One treatment, sacituzumab Govitecan, is a monoclonal antibody called sacituzumab linked to a chemotherapy drug called SN-38. Sacituzumab govitecan is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of tumor cells, known as Tumor-associated calcium signal transducer 2 (TROP2) receptors, and delivers SN-38 to kill them. Another treatment, liposomal doxorubicin, is a form of the anticancer drug doxorubicin that is contained in very tiny, fat-like particles. It may have fewer side effects and work better than doxorubicin, and may enhance factors associated with immune response. The third medication is called binimetinib, which may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth, and may help activate the immune system. It is not yet known whether giving avelumab in combination with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan will work better in treating patients with triple negative breast cancer.
Breast
II
Abramson, Vandana
NCT03971409
VICCBRE1987
Study of Lurbinectedin in Combination With Doxorubicin Versus Doxorubicin Alone as First-line Treatment in Participants With Metastatic Leiomyosarcoma (SaLuDo)
Sarcoma
Sarcoma
The primary objective of this phase III study is to evaluate whether the combination of lurbinectedin plus doxorubicin given as first line treatment for metastatic leiomyosarcoma (LMS) prolongs the progression-free survival (PFS) by Independent Review Committee (IRC) when compared to doxorubicin administered as a single agent.
Sarcoma
II/III
Davis, Elizabeth
NCT06088290
VICC-DTSAR23232
A Study Evaluating Single-agent Inavolisib and Inavolisib Plus Atezolizumab in PIK3CA-Mutated Cancers
Multiple Cancer Types
The purpose of the study is to assess the safety and efficacy of inavolisib as a single-agent and in combination with atezolizumab in participants with phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA)-mutated cancers, including previously treated head and neck squamous cell carcinoma (HNSCC).
Head/Neck,
Phase I
I
Choe, Jennifer
NCT06496568
VICCHNP22118
Evaluating the Use of Dual Imaging Techniques for Detection of Disease in Patients With Head and Neck Cancer
Phase I
Phase I
This phase I trial evaluates the safety and effectiveness of using two imaging techniques, indium In 111 panitumumab (111In-panitumumab) with single photon emission computed tomography (SPECT)/computed tomography (CT) and panitumumab-IRDye800 fluorescence imaging during surgery (intraoperative), to detect disease in patients with head and neck cancer. 111In-panitumumab is an imaging agent made of a monoclonal antibody that has been labeled with a radioactive molecule called indium In 111. The agent targets and binds to receptors on tumor cells. This allows the cells to be visualized and assessed with SPECT/CT imaging techniques. SPECT is special type of CT scan in which a small amount of a radioactive drug is injected into a vein and a scanner is used to make detailed images of areas inside the body where the radioactive material is taken up by the cells. CT is an imaging technique for examining structures within the body by scanning them with x-rays and using a computer to construct a series of cross-sectional scans along a single axis. Panitumumab-IRDye800 is an imaging agent composed of panitumumab, a monoclonal antibody, linked to a fluorescent dye called IRDye800. Upon administration, panitumumab-IRDye800 targets and binds to receptors on tumor cells. This allows the tumor cells to be detected using fluorescence imaging during surgery. Adding 111In-panitumumab SPECT/CT imaging to intraoperative panitumumab-IRDye800 fluorescence imaging may be more effective at detecting disease in patients with head and neck cancer.
Phase I
I
Rosenthal, Eben
NCT05945875
VICC-EDHAN23204P
A Study to Test the Addition of the Drug Cabozantinib to Chemotherapy in Patients With Newly Diagnosed Osteosarcoma
This phase II/III trial tests the safety, side effects, and best dose of the drug cabozantinib in combination with standard chemotherapy, and to compare the effect of adding cabozantinib to standard chemotherapy alone in treating patients with newly diagnosed osteosarcoma. Cabozantinib is in a class of medications called kinase inhibitors which block protein signals affecting new blood vessel formation and the ability to activate growth signaling pathways. This may help slow the growth of tumor cells. The drugs used in standard chemotherapy for this trial are methotrexate, doxorubicin, and cisplatin (MAP). Methotrexate stops cells from making DNA and may kill tumor cells. It is a type of antimetabolite. Doxorubicin is in a class of medications called anthracyclines. It works by slowing or stopping the growth of tumor cells in the body. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of tumor cells. Adding cabozantinib to standard chemotherapy may work better in treating newly diagnosed osteosarcoma.
Not Available
II/III
Not Available
NCT05691478
VICC-NTPED23198
Pembrolizumab vs. Observation in People With Triple-negative Breast Cancer Who Had a Pathologic Complete Response After Chemotherapy Plus Pembrolizumab
Breast
Breast
The phase III trial compares the effect of pembrolizumab to observation for the treatment of patients with early-stage triple-negative breast cancer who achieved a pathologic complete response after preoperative chemotherapy in combination with pembrolizumab. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial may help researchers determine if observation will result in the same risk of cancer coming back as pembrolizumab after surgery in triple-negative breast cancer patients who achieve pathologic complete response after preoperative chemotherapy with pembrolizumab.
Breast
III
Abramson, Vandana
NCT05812807
VICC-NTBRE23357
Safety and Efficacy of ALLO-501A Anti-CD19 Allogeneic CAR T Cells in Adults with Relapsed/Refractory Large B Cell Lymphoma, Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma (ALPHA2)
This is a single-arm, open label, multicenter Phase 1/2 study evaluating ALLO-501A in adult subjects with R/R LBCL and CLL/SLL. The purpose of the ALPHA2 study is to assess the safety, efficacy, and cell kinetics of ALLO-501A in adults with relapsed or refractory large B-cell lymphoma and assess the safety of ALLO-501A in adults with relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) after a lymphodepletion regimen comprising fludarabine, cyclophosphamide, and ALLO-647.
Not Available
II
Jallouk, Andrew
NCT04416984
VICC-DTCTT24008