Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



A First-In-Human, Phase 1, Dose-Escalation Study of SGR-3515 In Participants with Advanced Solid Tumors

Not Available
I
Gibson, Mike
NCT06463340
VICC-DTPHI24100

Testing Chemotherapy versus Chemotherapy plus Radiotherapy Prior to Limited Surgery for Early Rectal Cancer

This phase III trial compares the effect of the combination of fluorouracil, oxaliplatin, and leucovorin calcium (FOLFOX) or capecitabine and oxaliplatin (CAPOX) followed by limited surgery with transanal endoscopic surgery (TES) versus chemoradiation followed by TES for the treatment of early stage rectal cancer. The usual approach for patients who are not in a study is surgery to remove the rectum or treatment with chemotherapy and radiation therapy, followed by surgery. Fluorouracil stops cells from making deoxyribonucleic acid (DNA) and it may kill tumor cells. Leucovorin is in a class of medications called folic acid analogs. When used with fluorouracil, it enhances the effects of this chemotherapy drug. Oxaliplatin is in a class of medications called platinum-containing antineoplastic agents. It damages the cells DNA and may kill cancer cells. CAPOX is a combination of two drugs (capecitabine and oxaliplatin) and used as standard chemotherapy in treatment of rectal cancer. CAPOX works by damaging the DNA in tumor cells, and may cause the cells to stop growing and die. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill tumor cells and shrink tumors. This study will help researchers find out if chemotherapy with FOLFOX or CAPOX prior to surgery works better, the same, or worse than the usual approach and improves the quality of life in patients with early rectal cancer.
Not Available
III
Eng, Cathy
NCT06205485
SWOGGICO32

Dinutuximab with Chemotherapy, Surgery and Stem Cell Transplantation for the Treatment of Children with Newly Diagnosed High Risk Neuroblastoma

This phase III trial tests how well adding dinutuximab to induction chemotherapy along with standard of care surgery radiation and stem cell transplantation works for treating children with newly diagnosed high risk neuroblastoma. Dinutuximab is a monoclonal antibody that binds to a molecule called GD2, which is found in greater than normal amounts on some types of cancer cells. This helps cells of the immune system kill the cancer cells. Chemotherapy drugs such as cyclophosphamide, topotecan, cisplatin, etoposide, vincristine, dexrazoxane, doxorubicin, temozolomide, irinotecan and isotretinoin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing or by stopping them from spreading. During induction, chemotherapy and surgery are used to kill and remove as much tumor as possible. During consolidation, very high doses of chemotherapy are given to kill any remaining cancer cells. This chemotherapy also destroys healthy bone marrow, where blood cells are made. A stem cell transplant is a procedure that helps the body make new healthy blood cells to replace the blood cells that may have been harmed by the cancer and/or chemotherapy. Radiation therapy is also given to the site where the cancer originated (primary site) and to any other areas that are still active at the end of induction.
Not Available
III
Benedetti, Daniel
NCT06172296
VICC-NTPED24104

Safety and Tolerability of Ziftomenib Combinations in Patients With Relapsed/Refractory Acute Myeloid Leukemia

The safety, tolerability, and antileukemic response of ziftomenib in combination with
standard of care treatments for patients with relapsed/refractory acute myeloid leukemia will
be examined with the following agents: FLAG-IDA, low-dose cytarabine, and gilteritinib.
Not Available
I
Fedorov, Kateryna
NCT06001788
VICC-DTHEM23484P

Sacituzumab Govitecan and Atezolizumab for the Prevention of Triple Negative Breast Cancer Recurrence

This phase II trial investigates how well sacituzumab govitecan and atezolizumab work in preventing triple negative breast cancer from coming back (recurrence). Atezolizumab is a protein that affects the immune system by blocking the PD-L1 pathway. The PD-L1 pathway controls the bodys natural immune response, but for some types of cancer the immune system does not work as it should and is prevented from attacking tumors. Atezolizumab works by blocking the PD-L1 pathway, which may help the immune system identify and catch tumor cells. Sacituzumab govitecan is a monoclonal antibody, called sacituzumab, linked to a chemotherapy drug, called SN-38. Sacituzumab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as TROP2 receptors, and delivers SN-38 to kill them. Giving sacituzumab govitecan and atezolizumab may work as a treatment for residual cancer in the breast or lymph nodes.
Not Available
II
Abramson, Vandana
NCT04434040
VICCBRE2056

A Study to Compare Treatment with the Drug Selumetinib Alone versus Selumetinib and Vinblastine in Patients with Recurrent or Progressive Low-Grade Glioma

This phase III trial investigates the best dose of vinblastine in combination with selumetinib and the benefit of adding vinblastine to selumetinib compared to selumetinib alone in treating children and young adults with low-grade glioma (a common type of brain cancer) that has come back after prior treatment (recurrent) or does not respond to therapy (progressive). Selumetinib is a drug that works by blocking a protein that lets tumor cells grow without stopping. Vinblastine blocks cell growth by stopping cell division and may kill cancer cells. Giving selumetinib in combination with vinblastine may work better than selumetinib alone in treating recurrent or progressive low-grade glioma.
Not Available
III
Esbenshade, Adam
NCT04576117
COGACNS1931

Inotuzumab Ozogamicin in Treating Younger Patients with B-Lymphoblastic Lymphoma or Relapsed or Refractory CD22 Positive B Acute Lymphoblastic Leukemia

This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
Not Available
II
Not Available
NCT02981628
COGAALL1621

Pembrolizumab after Radiation Therapy and Chemotherapy in Treating Patients with Limited Stage Small Cell Lung Cancer

Lung

This phase II trial studies how well pembrolizumab after standard treatment with radiation plus the following chemotherapy drugs: cisplatin or carboplatin, plus etoposide works in treating patients with limited stage small cell lung cancer (LS-SCLC). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab after standard treatment with radiation plus chemotherapy may increase the ability of the immune system to fight LS-SCLC.
Lung
II
Whitaker, Ryan
NCT06140407
VICCTHO22114

Neoadjuvant Neratinib for the Treatment of Stage I-III HER2-Mutated Lobular Breast Cancers

This phase II trial tests how well neratinib prior to the primary treatment (neoadjuvant) works in treating patients with stage I-III HER2 mutated lobular breast cancers. Neratinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving neratinib in addition to normal therapy may work better in treating cancer than the endocrine therapy patients would normally receive.
Not Available
II
Not Available
NCT05919108
VICC-NCBRE23172

Testing the Addition of the AKT Inhibitor, Ipatasertib, to Treatment with the Hormonal Agent Megestrol Acetate for Recurrent or Metastatic Endometrial Cancers

This phase Ib/II trial tests the safety, side effects, best dose, and effectiveness of the combination of ipatasertib with megestrol acetate to megestrol acetate alone in patients with endometrial cancer that has come back (recurrent) or has spread to other places in the body (metastatic). Ipatasertib may stop the growth of tumor cells and may kill them by blocking some of the enzymes needed for cell growth. Megestrol acetate lowers the amount of estrogen and also blocks the use of estrogen made by the body. This may help stop the growth of tumor cells that need estrogen to grow. The combination of ipatasertib and megestrol acetate may be more effective in treating endometrial cancer than megestrol acetate alone.
Not Available
I/II
Crispens, Marta
NCT05538897
NRGGYNGY028

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.