Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Testing Nivolumab and Ipilimumab with Short-Course Radiation in Advanced Rectal Cancer

This phase II trial investigates the effect of nivolumab and ipilimumab when given together with short-course radiation therapy in treating patients with rectal cancer that has spread to other places in the body (advanced). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving nivolumab, ipilimumab, and radiation therapy may kill more cancer cells.
Not Available
II
Ciombor, Kristen
NCT04751370
ECOGGIEA2201

Comparing an Alternative Surgical Procedure, Sentinel Lymph Node (SLN) Biopsy, with Standard Neck Dissection for Patients with Early-Stage Oral Cavity Cancer

Head/Neck

This phase II / III trial studies how well sentinel lymph node biopsy works and compares sentinel lymph node biopsy surgery to standard neck dissection as part of the treatment for early-stage oral cavity cancer. Sentinel lymph node biopsy surgery is a procedure that removes a smaller number of lymph nodes from your neck because it uses an imaging agent to see which lymph nodes are most likely to have cancer. Standard neck dissection, such as elective neck dissection, removes many of the lymph nodes in your neck. Using sentinel lymph node biopsy surgery may work better in treating patients with early-stage oral cavity cancer compared to standard elective neck dissection.
Head/Neck
II/III
Topf, Michael
NCT04333537
NRGHN006

A Phase 1 / 2, Study Evaluating the Safety, Tolerability, PK, and Efficacy of AMG 510 in Subjects With Solid Tumors With a Specific KRAS Mutation (CodeBreaK 100)

Multiple Cancer Types

Evaluate the safety and tolerability of AMG 510 in adult subjects with KRAS p.G12C mutant advanced solid tumors. Estimate the maximum tolerated dose (MTD) and / or a recommended phase 2 dose (RP2D) in adult subjects with KRAS p.G12C mutant advanced solid tumors.
Miscellaneous, Phase I
I/II
Iams, Wade
NCT03600883
VICCPHI18161

Testing Immunotherapy versus Observation in Patients with HPV Throat Cancer

Head/Neck

This phase III trials studies whether maintenance immunotherapy (nivolumab) following definitive treatment with radiation and chemotherapy (cisplatin) result in significant improvement in overall survival (time being alive) and progression-free survival (time being alive without cancer) for patients with intermediate risk human papillomavirus (HPV) positive oropharynx cancer (throat cancer) that has spread to nearby tissue or lymph nodes. Drugs used in chemotherapy such as cisplatin work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy rays to kill tumor cells and shrink tumors. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether chemotherapy and radiation therapy followed by maintenance nivolumab therapy works better than chemotherapy and radiation therapy alone in treating patients with HPV positive oropharyngeal cancer.
Head/Neck
II/III
Gibson, Mike
NCT03811015
ECOGHNEA3161

Cisplatin and Combination Chemotherapy in Treating Children and Young Adults with Hepatoblastoma or Liver Cancer After Surgery

Multiple Cancer Types

This partially randomized phase II / III trial studies how well, in combination with surgery, cisplatin and combination chemotherapy works in treating children and young adults with hepatoblastoma or hepatocellular carcinoma. Drugs used in chemotherapy, such as cisplatin, doxorubicin, fluorouracil, vincristine sulfate, carboplatin, etoposide, irinotecan, sorafenib, gemcitabine and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving combination chemotherapy may kill more tumor cells than one type of chemotherapy alone.
Hepatoblastoma (Pediatrics), Pediatric Solid Tumors, Pediatrics
II/III
Benedetti, Daniel
NCT03533582
COGAHEP1531

Trametinib in Treating Patients with Relapsed or Refractory Juvenile Myelomonocytic Leukemia

Multiple Cancer Types

This phase II trial studies how well trametinib works in treating patients with juvenile myelomonocytic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Pediatric Leukemia, Pediatrics
II
Borinstein, Scott
NCT03190915
COGADVL1521

A Phase II / III Trial of Nivolumab, Ipilimumab, and GM-CSF in Patients with Advanced Melanoma

Melanoma

This phase II / III trial studies the side effects of nivolumab and ipilimumab when given together with or without sargramostim and to see how well they work in treating patients with stage III-IV melanoma that cannot be removed by surgery (unresectable). Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Colony-stimulating factors, such as sargramostim, may increase the production of white blood cells. It is not yet known whether nivolumab and ipilimumab are more effective with or without sargramostim in treating patients with melanoma.
Melanoma
II/III
Johnson, Douglas
NCT02339571
ECOGMELEA6141

Response-Based Chemotherapy in Treating Newly Diagnosed Acute Myeloid Leukemia or Myelodysplastic Syndrome in Younger Patients with Down Syndrome

Multiple Cancer Types

This phase III trial studies response-based chemotherapy in treating newly diagnosed acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Response-based chemotherapy separates patients into different risk groups and treats them according to how they respond to the first course of treatment (Induction I). Response-based treatment may be effective in treating acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome while reducing the side effects.
Myelodysplastic Syndrome, Pediatric Leukemia
III
Friedman, Debra
NCT02521493
COGAAML1531

A Study to Compare Standard Chemotherapy to Therapy with CPX-351 and / or Gilteritinib for Patients with Newly Diagnosed AML with or without FLT3 Mutations

Multiple Cancer Types

This phase III trial compares standard chemotherapy to therapy with CPX-351 and / or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and / or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and / or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3 / ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and / or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
Leukemia, Pediatric Leukemia, Pediatrics
III
Zarnegar-Lumley, Sara
NCT04293562
COGAAML1831

Reduced Craniospinal Radiation Therapy and Chemotherapy in Treating Younger Patients with Newly Diagnosed WNT-Driven Medulloblastoma

Multiple Cancer Types

This phase II trial studies how well reduced doses of radiation therapy to the brain and spine (craniospinal) and chemotherapy work in treating patients with newly diagnosed type of brain tumor called WNT) / Wingless (WNT)-driven medulloblastoma. Recent studies using chemotherapy and radiation therapy have been shown to be effective in treating patients with WNT-driven medulloblastoma. However, there is a concern about the late side effects of treatment, such as learning difficulties, lower amounts of hormones, or other problems in performing daily activities. Radiotherapy uses high-energy radiation from x-rays to kill cancer cells and shrink tumors. Drugs used in chemotherapy, such as cisplatin, vincristine sulfate, cyclophosphamide and lomustine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving reduced craniospinal radiation therapy and chemotherapy may kill tumor cells and may also reduce the late side effects of treatment.
Neuro-Oncology, Pediatrics
II
Pastakia, Devang
NCT02724579
COGACNS1422

To learn more about any of our clinical
trials, call 1-800-811-8480 or complete
the online Self-Referral Form here: