Clinical Trials Search at Vanderbilt-Ingram Cancer Center
Clinical Trial of an Anti-cancer Drug, CA-4948 (Emavusertib), in Combination With Chemotherapy Treatment (FOLFOX Plus Bevacizumab) in Metastatic Colorectal Cancer
Multiple Cancer Types
This phase I trial studies the side effects and best dose of CA-4948 when given together with fluorouracil, leucovorin, oxaliplatin (FOLFOX) plus bevacizumab in treating patients with colorectal cancer that has spread from where it first started (primary site) to other places in the body (metastatic). CA-4948 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. The chemotherapy drugs used in FOLOX, fluorouracil and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Leucovorin is used with fluorouracil to treat colorectal cancer. Bevacizumab is in a class of medications called anti-angiogenic agents. It works by stopping the formation of blood vessels that bring oxygen and nutrients to the tumor. This may slow the growth and spread of the tumor. Giving CA-4948 with FOLFOX plus bevacizumab may be safe, tolerable and/or effective in treating patients with metastatic colorectal cancer.
Colon,
Phase I,
Rectal
I
Ciombor, Kristen
NCT06696768
ETCGIP10655
Comparing Two Methods to Follow Patients With Pancreatic Cysts
Pancreatic
Pancreatic
The purpose of this study is to compare the two approaches for monitoring pancreatic cysts. The study doctors want to compare more frequent monitoring vs less frequent monitoring in order to learn which monitoring method leads to better outcome for patients with pancreatic cysts.
Pancreatic
N/A
Tan, Marcus
NCT04239573
ECOGGIEA2185
Targeted Treatment for Metastatic Prostate Cancer, The PREDICT Trial
This phase II trial evaluates whether genetic testing in prostate cancer is helpful in deciding which study treatment patients are assigned. Patient cancer tissue samples are obtained from a previous surgery or biopsy procedure and tested for deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) abnormalities or mutations in their cancer. Valemetostat tosylate is in a class of medications called EZH1/EZH2 inhibitors. It blocks proteins called EZH1 and EZH2, which may help slow or stop the spread of tumor cells. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Cabazitaxel injection is in a class of medications called microtubule inhibitors. It works by slowing or stopping the growth of tumor cells. Abiraterone acetate blocks tissues from making androgens (male hormones), such as testosterone. This may cause the death of tumor cells that need androgens to grow. It is a type of anti-androgen. Enzalutamide is in a class of medications called androgen receptor inhibitors. It works by blocking the effects of androgen (a male reproductive hormone) to stop the growth and spread of tumor cells. Lutetium Lu 177 vipivotide tetraxetan is in a class of medications called radiopharmaceuticals. It works by targeting and delivering radiation directly to tumor cells which damages and kills these cells. Assigning patients to targeted treatment based on genetic testing may help shrink or slow the cancer from growing
Not Available
II
Schaffer, Kerry
NCT06632977
ALLUROA032102
Clinical Study of Ivonescimab for First-line Treatment of Metastatic NSCLC Patients With High PD-L1
Clinical study of ivonescimab for first-line treatment of metastatic NSCLC patients with high PD-L1. Evaluating overall survival and progression free survival.
Not Available
III
Not Available
NCT06767514
VICCTHO25003
Neoadjuvant Darolutamide Alone or in Combination With Standard Therapy for Stage II-IIIA, AR+, TNBC
Breast
Breast
This phase II trial compares the effect of adding darolutamide to standard therapy versus standard therapy alone before surgery for the treatment of patients with stage II-IIIA androgen receptor positive triple-negative breast carcinoma. Standard therapy before surgery for triple-negative breast cancer typically consists of a combination of chemotherapy and immunotherapy drugs. Chemotherapy drugs, such as carboplatin, paclitaxel, doxorubicin and cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Darolutamide is in a class of medications called androgen receptor inhibitors. It works by blocking the effects of androgen (a male reproductive hormone) to stop the growth and spread of tumor cells. Giving darolutamide in combination with standard therapy before surgery may make the tumor smaller and may reduce the amount of normal tissue that needs to be removed.
Breast
II
Abramson, Vandana
NCT07016399
VICC-VCBRE23490
Gabapentin & Ketamine for Prevention/Treatment of Acute/Chronic Pain in Locally Advanced Head and Neck Cancer
Multiple Cancer Types
This is a study to establish a safe and feasible dose for prophylactic use of a combination of gabapentin and ketamine in head and neck cancer patients undergoing chemoradiation.
Head/Neck,
Phase I
I/II
Lockney, Natalie
NCT05156060
VICCHNP2173
A Study Evaluating the Efficacy and Safety of Multiple Treatment Combinations in Patients With Metastatic or Locally Advanced Breast Cancer
Multiple Cancer Types
This is an umbrella study evaluating the efficacy and safety of multiple treatment combinations in participants with metastatic or inoperable locally advanced breast cancer.
The study will be performed in two stages. During Stage 1, six cohorts will be enrolled in parallel in this study:
Cohort 1 will consist of programmed death-ligand 1 (PD-L1)-positive participants who have received no prior systemic therapy for metastatic or inoperable locally advanced triple-negative breast cancer (TNBC) (first-line \[1L\] PD-L1+ cohort).
Cohort 2 will consist of participants who had disease progression during or following 1L treatment with chemotherapy for metastatic or inoperable locally-advanced TNBC and have not received cancer immunotherapy (CIT) (second-line \[2L\] CIT-nave cohort).
Cohort 3, 5, and 6 will consist of participants with locally advanced or metastatic hormone receptor-positive (HR+), human epidermal growth factor receptor 2 (HER2)-negative disease with one or more PIK3CA mutations.
Cohort 4 will consist of participants with locally advanced or metastatic HER2+ /HER2-low disease with one or more PIK3CA mutations who had disease progression on standard-of-care therapies (HER2+ /HER2-low cohort).
In each cohort, eligible participants will initially be assigned to one of several treatment arms (Stage 1). During Stage 2, participants in the 2L CIT-nave cohort who experience disease progression, loss of clinical benefit, or unacceptable toxicity during Stage 1 may be eligible to continue treatment with a different treatment combination, provided Stage 2 is open for enrollment and all eligibility criteria are met.
The study will be performed in two stages. During Stage 1, six cohorts will be enrolled in parallel in this study:
Cohort 1 will consist of programmed death-ligand 1 (PD-L1)-positive participants who have received no prior systemic therapy for metastatic or inoperable locally advanced triple-negative breast cancer (TNBC) (first-line \[1L\] PD-L1+ cohort).
Cohort 2 will consist of participants who had disease progression during or following 1L treatment with chemotherapy for metastatic or inoperable locally-advanced TNBC and have not received cancer immunotherapy (CIT) (second-line \[2L\] CIT-nave cohort).
Cohort 3, 5, and 6 will consist of participants with locally advanced or metastatic hormone receptor-positive (HR+), human epidermal growth factor receptor 2 (HER2)-negative disease with one or more PIK3CA mutations.
Cohort 4 will consist of participants with locally advanced or metastatic HER2+ /HER2-low disease with one or more PIK3CA mutations who had disease progression on standard-of-care therapies (HER2+ /HER2-low cohort).
In each cohort, eligible participants will initially be assigned to one of several treatment arms (Stage 1). During Stage 2, participants in the 2L CIT-nave cohort who experience disease progression, loss of clinical benefit, or unacceptable toxicity during Stage 1 may be eligible to continue treatment with a different treatment combination, provided Stage 2 is open for enrollment and all eligibility criteria are met.
Breast,
Phase I
I/II
Kennedy, Laura
NCT03424005
VICCBREP2126
A First-in-human Study of PRTH-101 Monotherapy +/- Pembrolizumab in Subjects With Advanced Malignancies
The goal of this Open-Label Study is to evaluate the safety and tolerability of PRTH-101 alone or in combination with pembrolizumab in adults with advance or metastatic solid tumors.
Not Available
I
Berlin, Jordan
NCT05753722
VICC-DTPHI23182
Evaluating the Addition of the Immunotherapy Drug Atezolizumab to Standard Chemotherapy Treatment for Advanced or Metastatic Neuroendocrine Carcinomas That Originate Outside the Lung
Neuroendocrine
Neuroendocrine
This phase II/III trial compares the effect of immunotherapy with atezolizumab in combination with standard chemotherapy with a platinum drug (cisplatin or carboplatin) and etoposide versus standard therapy alone for the treatment of poorly differentiated extrapulmonary (originated outside the lung) neuroendocrine cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or that has spread from where it first started (primary site) to other places in the body (metastatic). The other aim of this trial is to compare using atezolizumab just at the beginning of treatment versus continuing it beyond the initial treatment. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cisplatin and carboplatin are in a class of medications known as platinum-containing compounds that work by killing, stopping or slowing the growth of cancer cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair, and it may kill cancer cells. Giving atezolizumab in combination with a platinum drug (cisplatin or carboplatin) and etoposide may work better in treating patients with poorly differentiated extrapulmonary neuroendocrine cancer compared to standard therapy with a platinum drug (cisplatin or carboplatin) and etoposide alone.
Neuroendocrine
II/III
Ramirez, Robert
NCT05058651
SWOGGIS2012
Testing the Effectiveness of Two Immunotherapy Drugs (Nivolumab and Ipilimumab) With One Anti-cancer Targeted Drug (Cabozantinib) for Rare Genitourinary Tumors
Multiple Cancer Types
This phase II trial studies how well cabozantinib works in combination with nivolumab and ipilimumab in treating patients with rare genitourinary (GU) tumors that has spread from where it first started (primary site) to other places in the body. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib, nivolumab, and ipilimumab may work better in treating patients with genitourinary tumors that have no treatment options compared to giving cabozantinib, nivolumab, or ipilimumab alone.
Bladder,
Kidney (Renal Cell),
Rectal
II
Schaffer, Kerry
NCT03866382
ALLIANCEUROA031702