Clinical Trials Search at Vanderbilt-Ingram Cancer Center
Window Trial of Fluorescently Labeled Panitumumab (Panitumumab-IRDye800) in Head and Neck Cancer
Multiple Cancer Types
Head/Neck,
Phase I
I
Rosenthal, Eben
VICCHNP24602
Expanded Access Program (EAP) for Obecabtagene Autoleucel (Obe-Cel) Out-of-Specification (OOS) in Adult Patients with Acute Lymphoblastic Leukemia
Leukemia
Leukemia
Leukemia
N/A
Oluwole, Olalekan
VICC-CTT25006
High-Resolution Specimen PET-CT Imaging for the Intraoperative Visualization of Resection Margins: An Exploratory Study
Miscellaneous
Miscellaneous
Miscellaneous
I
Topf, Michael
VICCHNP24616
A Study of the Drugs Selumetinib vs. Carboplatin and Vincristine in Patients With Low-Grade Glioma
This phase III trial compares the effect of selumetinib versus the standard of care treatment with carboplatin and vincristine (CV) in treating patients with newly diagnosed or previously untreated low-grade glioma (LGG) that does not have a genetic abnormality called BRAFV600E mutation and is not associated with systemic neurofibromatosis type 1. Selumetinib works by blocking some of the enzymes needed for cell growth and may kill tumor cells. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Vincristine is in a class of medications called vinca alkaloids. It works by stopping tumor cells from growing and dividing and may kill them. The overall goal of this study is to see if selumetinib works just as well as the standard treatment of CV for patients with LGG. Another goal of this study is to compare the effects of selumetinib versus CV in subjects with LGG to find out which is better. Additionally, this trial will also examine if treatment with selumetinib improves the quality of life for subjects who take it.
Not Available
III
Not Available
NCT04166409
COGACNS1833
Study of Arlocabtagene Autoleucel (BMS-986393) a GPRC5D-directed CAR T Cell Therapy in Adult Participants With Relapsed or Refractory Multiple Myeloma
Multiple Myeloma
Multiple Myeloma
The purpose of this study is to evaluate the effectiveness and safety of Arlocabtagene Autoleucel (BMS-986393) in participants with relapsed or refractory multiple myeloma.
Multiple Myeloma
II
Baljevic, Muhamed
NCT06297226
VICC-DTCTT23527
Venetoclax in Children With Relapsed Acute Myeloid Leukemia (AML)
Multiple Cancer Types
A study to evaluate if the randomized addition of venetoclax to a chemotherapy backbone (fludarabine/cytarabine/gemtuzumab ozogamicin \[GO\]) improves survival of children/adolescents/young adults with acute myeloid leukemia (AML) in 1st relapse who are unable to receive additional anthracyclines, or in 2nd relapse.
Pediatric Leukemia,
Pediatrics
III
Smith, Christine
NCT05183035
VICCPED2237
Study of ONO-4685 in Patients With Relapsed or Refractory T Cell Lymphoma
Lymphoma
Lymphoma
This study will investigate the safety, tolerability, pharmacokinetics, and preliminary efficacy of ONO-4685 in patients with relapsed or refractory T cell Lymphoma
Lymphoma
I
Dholaria, Bhagirathbhai
NCT05079282
VICC-DTPCL24022P
Cemiplimab for the Treatment of Locally Advanced Head and Neck Basal Cell Carcinoma Before Surgery
Head/Neck
Head/Neck
This phase II trial tests how well cemiplimab works in treating basal cell carcinoma of the head and neck that has spread to nearby tissue or lymph nodes (locally advanced) before surgery (neoadjuvant). Cemiplimab is a human recombinant monoclonal IgG4 antibody that may allow the body's immune system to work against tumor cells. Giving cemiplimab before surgery may make the tumor smaller and make it easier to remove.
Head/Neck
II
Topf, Michael
NCT05929664
VICC-ITHAN23127
Phase I/II Trial in ES-SCLC to Enhance Response to Atezolizumab Plus Chemotherapy With Total Body Irradiation
Multiple Cancer Types
This phase I/II trial studies the side effects, safety, and effectiveness of low dose radiation to the entire body (total body irradiation \[TBI\]) and higher dose radiation to known areas of cancer (hypofractionated radiation therapy \[H-RT\]) combined with atezolizumab and chemotherapy (carboplatin \& etoposide) in treating patients with small cell lung cancer that has spread to disease sites outside of the lung (extensive stage). Extensive stage disease has historically been treated with chemotherapy alone with consideration of chest (thoracic) radiation therapy for those with response to chemotherapy, as well as consideration of preventative radiation therapy to the head (prophylactic cranial irradiation). Emerging evidence supports the synergistic interactions between immunotherapy and radiation therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill tumor cells. Combining TBI and H-RT with atezolizumab and chemotherapy may improve response to treatment.
Lung,
Small Cell
I/II
Osmundson, Evan
NCT06110572
VICCTHOP2206
Targeted Alpha-Particle Therapy for Advanced Somatostatin Receptor Type 2 (SSTR2) Positive Neuroendocrine Tumors
Multiple Cancer Types
This study is Phase I/IIa First-in-Human Study of \[212Pb\]VMT--NET Targeted Alpha-Particle Therapy for Advanced SSTR2 Positive Neuroendocrine Tumors
Neuroendocrine,
Phase I
I/II
Ramirez, Robert
NCT05636618
VICC-DTPHI23045