Clinical Trials Search at Vanderbilt-Ingram Cancer Center
(Z)-Endoxifen for the Treatment of Premenopausal Women With ER+/HER2- Breast Cancer
Breast
Breast
This open-label research study is studying (Z)-endoxifen as a possible treatment for pre-menopausal women with ER+/HER2- breast cancer. (Z)-endoxifen belongs to a group of drugs called selective estrogen receptor modulators or "SERM", which help block estrogen from attaching to cancer cells. This study has two parts: a pharmacokinetic part and a treatment part.
The PK part (how the body processes the drug) will enroll about 18 participants. All participants will take (Z)-endoxifen capsules daily. Twelve participants will be randomly assigned (50/50 chance) to take (Z)-endoxifen alone or (Z)-endoxifen with a monthly injection of goserelin a drug that temporarily stops the ovaries from making estrogen. This part will help determine the best dose of (Z)-endoxifen by measuring the drug levels in the blood and how long the body takes to remove it.
The Treatment Cohort has been simplified to a single study arm (Z)-endoxifen + goserelin. Up to 20 participants will be enrolled that have a baseline Ki-67 10% and 45 participants will be enrolled that have a baseline Ki-67\>10%.
A key goal of the study is to see if (Z)-endoxifen can slow down or stop tumor growth as measured by a reduction in Ki-67 levels. Tumor tissue samples will be taken by breast biopsy after about 4 weeks of treatment to check levels of this biomarker. If the tumor shows signs of response, participants can continue treatment for up to 24 weeks or until they have surgery.
Study participation is up to 6 months (24 weeks of treatment) followed by surgery and a one-month follow up visit.
The PK part (how the body processes the drug) will enroll about 18 participants. All participants will take (Z)-endoxifen capsules daily. Twelve participants will be randomly assigned (50/50 chance) to take (Z)-endoxifen alone or (Z)-endoxifen with a monthly injection of goserelin a drug that temporarily stops the ovaries from making estrogen. This part will help determine the best dose of (Z)-endoxifen by measuring the drug levels in the blood and how long the body takes to remove it.
The Treatment Cohort has been simplified to a single study arm (Z)-endoxifen + goserelin. Up to 20 participants will be enrolled that have a baseline Ki-67 10% and 45 participants will be enrolled that have a baseline Ki-67\>10%.
A key goal of the study is to see if (Z)-endoxifen can slow down or stop tumor growth as measured by a reduction in Ki-67 levels. Tumor tissue samples will be taken by breast biopsy after about 4 weeks of treatment to check levels of this biomarker. If the tumor shows signs of response, participants can continue treatment for up to 24 weeks or until they have surgery.
Study participation is up to 6 months (24 weeks of treatment) followed by surgery and a one-month follow up visit.
Breast
II
Abramson, Vandana
NCT05607004
VICCBRE22108
Testing the Addition of an Anti-Cancer Drug, ZEN003694, to the Usual Chemotherapy Treatment (Capecitabine) for Metastatic or Unresectable Cancers
Multiple Cancer Types
This phase I trial tests the safety, side effects, and best dose of ZEN003694 in combination with the usual treatment with capecitabine in treating patients with cancer that has spread from where it first started (primary site) to other places in the body (metastatic) or cannot be removed by surgery (unresectable) and that it has progressed on previous standard treatment. ZEN003694 is an inhibitor of a family of proteins called the bromodomain and extra-terminal (BET). It may prevent the growth of tumor cells that over produce BET protein. Capecitabine is in a class of medications called antimetabolites. It is taken up by cancer cells and breaks down into fluorouracil, a substance that kills cancer cells. Giving ZEN003694 in combination with capecitabine may be safe in treating patients with metastatic or unresectable solid tumors.
Colon,
Phase I,
Rectal
I
Heumann, Thatcher
NCT05803382
VICC-NTPHI23420
Evaluating the Use of Dual Imaging Techniques for Detection of Disease in Patients With Head and Neck Cancer
Phase I
Phase I
This phase I trial evaluates the safety and effectiveness of using two imaging techniques, indium In 111 panitumumab (111In-panitumumab) with single photon emission computed tomography (SPECT)/computed tomography (CT) and panitumumab-IRDye800 fluorescence imaging during surgery (intraoperative), to detect disease in patients with head and neck cancer. 111In-panitumumab is an imaging agent made of a monoclonal antibody that has been labeled with a radioactive molecule called indium In 111. The agent targets and binds to receptors on tumor cells. This allows the cells to be visualized and assessed with SPECT/CT imaging techniques. SPECT is special type of CT scan in which a small amount of a radioactive drug is injected into a vein and a scanner is used to make detailed images of areas inside the body where the radioactive material is taken up by the cells. CT is an imaging technique for examining structures within the body by scanning them with x-rays and using a computer to construct a series of cross-sectional scans along a single axis. Panitumumab-IRDye800 is an imaging agent composed of panitumumab, a monoclonal antibody, linked to a fluorescent dye called IRDye800. Upon administration, panitumumab-IRDye800 targets and binds to receptors on tumor cells. This allows the tumor cells to be detected using fluorescence imaging during surgery. Adding 111In-panitumumab SPECT/CT imaging to intraoperative panitumumab-IRDye800 fluorescence imaging may be more effective at detecting disease in patients with head and neck cancer.
Phase I
I
Rosenthal, Eben
NCT05945875
VICC-EDHAN23204P
Testing the Role of DNA Released From Tumor Cells Into the Blood in Guiding the Use of Immunotherapy After Surgical Removal of the Bladder, Kidney, Ureter, and Urethra for Urothelial Cancer Treatment, MODERN Study
This phase II/III trial examines whether patients who have undergone surgical removal of bladder, kidney, ureter or urethra, but require an additional treatment called immunotherapy to help prevent their urinary tract (urothelial) cancer from coming back, can be identified by a blood test. Many types of tumors tend to lose cells or release different types of cellular products including their DNA which is referred to as circulating tumor DNA (ctDNA) into the bloodstream before changes can be seen on scans. Health care providers can measure the level of ctDNA in blood or other bodily fluids to determine which patients are at higher risk for disease progression or relapse. In this study, a blood test is used to measure ctDNA and see if there is still cancer somewhere in the body after surgery and if giving a treatment will help eliminate the cancer. Immunotherapy with monoclonal antibodies, such as nivolumab and relatlimab, can help the body's immune system to attack the cancer, and can interfere with the ability of tumor cells to grow and spread. This trial may help doctors determine if ctDNA measurement in blood can better identify patients that need additional treatment, if treatment with nivolumab prolongs patients' life and whether the additional immunotherapy treatment with relatlimab extends time without disease progression or prolongs life of urothelial cancer patients who have undergone surgical removal of their bladder, kidney, ureter or urethra.
Not Available
II/III
Schaffer, Kerry
NCT05987241
ALLUROA032103
Safety and Efficacy of ALLO-501A Anti-CD19 Allogeneic CAR T Cells in Adults with Relapsed/Refractory Large B Cell Lymphoma, Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma (ALPHA2)
This is a single-arm, open label, multicenter Phase 1/2 study evaluating ALLO-501A in adult subjects with R/R LBCL and CLL/SLL. The purpose of the ALPHA2 study is to assess the safety, efficacy, and cell kinetics of ALLO-501A in adults with relapsed or refractory large B-cell lymphoma and assess the safety of ALLO-501A in adults with relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) after a lymphodepletion regimen comprising fludarabine, cyclophosphamide, and ALLO-647.
Not Available
II
Jallouk, Andrew
NCT04416984
VICC-DTCTT24008
A Study of Lower Radiotherapy Dose to Treat Children With CNS Germinoma
This phase II trial studies how well lower dose radiotherapy after chemotherapy (Carboplatin \& Etoposide) works in treating children with central nervous system (CNS) germinomas. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill cancer cells. Researchers want to see if lowering the dose of standard radiotherapy (RT) after chemotherapy can help get rid of CNS germinomas with fewer long-term side effects.
Not Available
II
Esbenshade, Adam
NCT06368817
COGACNS2321
Study of Lurbinectedin in Combination With Doxorubicin Versus Doxorubicin Alone as First-line Treatment in Participants With Metastatic Leiomyosarcoma (SaLuDo)
Sarcoma
Sarcoma
The primary objective of this phase III study is to evaluate whether the combination of lurbinectedin plus doxorubicin given as first line treatment for metastatic leiomyosarcoma (LMS) prolongs the progression-free survival (PFS) by Independent Review Committee (IRC) when compared to doxorubicin administered as a single agent.
Sarcoma
II/III
Davis, Elizabeth
NCT06088290
VICC-DTSAR23232
Venetoclax in Children With Relapsed Acute Myeloid Leukemia (AML)
Multiple Cancer Types
A study to evaluate if the randomized addition of venetoclax to a chemotherapy backbone (fludarabine/cytarabine/gemtuzumab ozogamicin \[GO\]) improves survival of children/adolescents/young adults with acute myeloid leukemia (AML) in 1st relapse who are unable to receive additional anthracyclines, or in 2nd relapse.
Pediatric Leukemia,
Pediatrics
III
Smith, Christine
NCT05183035
VICCPED2237
Study of Targeted Therapy vs. Chemotherapy in Patients With Thyroid Cancer
Thyroid
Thyroid
This phase III trial compares the effect of cabozantinib versus combination dabrafenib and trametinib for the treatment of patients with differentiated thyroid cancer that does not respond to treatment (refractory) and which expresses a BRAF V600E mutation. Cabozantinib is in a class of medications called receptor tyrosine kinase inhibitors. It binds to and blocks the action of several enzymes which are often over-expressed in a variety of tumor cell types. This may help stop or slow the growth of tumor cells and blood vessels the tumor needs to survive. Dabrafenib is an enzyme inhibitor that binds to and inhibits the activity of a protein called B-raf, which may inhibit the proliferation of tumor cells which contain a mutated BRAF gene. Trametinib is also an enzyme inhibitor. It binds to and inhibits the activity of proteins called MEK 1 and 2, which play a key role in activating pathways that regulate cell growth. This may inhibit the growth of tumor cells mediated by these pathways. The usual approach for patients with thyroid cancer is targeted therapy with dabrafenib and trametinib. This trial may help researchers decide which treatment option (cabozantinib alone or dabrafenib in combination with trametinib) is safer and/or more effective in treating patients with refractory BRAF V600E-mutated differentiated thyroid cancer.
Thyroid
III
Choe, Jennifer
NCT06475989
ECOGHNEA3231
Anti-Lag-3 (Relatlimab) and Anti-PD-1 Blockade (Nivolumab) Versus Standard of Care (Lomustine) for the Treatment of Patients With Recurrent Glioblastoma
Neuro-Oncology
Neuro-Oncology
This phase II trial compares the safety, side effects and effectiveness of anti-lag-3 (relatlimab) and anti-PD-1 blockade (nivolumab) to standard of care lomustine for the treatment of patients with glioblastoma that has come back after a period of improvement (recurrent). Relatlimab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. Lomustine is a chemotherapy drug and in a class of medications called alkylating agents. It damages the cell's deoxyribonucleic acid and may kill tumor cells. Giving relatlimab and nivolumab may be safe, tolerable, and/or effective compared to standard of care lomustine in treating patients with recurrent glioblastoma.
Neuro-Oncology
II
Mohler, Alexander
NCT06325683
ALLNEUA072201