Clinical Trials Search at Vanderbilt-Ingram Cancer Center
Canakinumab for the Prevention of Progression to Cancer in Patients With Clonal Cytopenias of Unknown Significance, IMPACT Study
Leukemia
Leukemia
This phase II trial tests how well canakinumab works to prevent progression to cancer in patients with clonal cytopenias of unknown significance (CCUS). CCUS is a blood condition defined by a decrease in blood cells. Blood cells are composed of either red blood cells, white blood cells, or platelets. In patients with CCUS, blood counts have been low for a long period of time. Patients with CCUS also have a mutation in one of the genes that are responsible for helping blood cells develop. The combination of genetic mutations and low blood cell counts puts patients with CCUS at a higher risk to develop blood cancers in the future. This transformation from low blood cell counts to cancer may be caused by inflammation in the body. Canakinumab is a monoclonal antibody that may block inflammation in the body by targeting a specific antibody called the anti-human interleukin-1beta (IL-1beta).
Leukemia
II
Kishtagari, Ashwin
NCT05641831
VICC-ITHEM23019
A Study of Elacestrant Versus Standard Endocrine Therapy in Women and Men With ER+,HER2-, Early Breast Cancer With High Risk of Recurrence
Breast
Breast
The primary goal of this study is to evaluate the effectiveness of elacestrant versus standard endocrine therapy in participants with node-positive, Estrogen Receptor-positive (ER+), Human Epidermal Growth Factor-2 negative (HER2-) early breast cancer with high risk of recurrence.
Breast
III
Abramson, Vandana
NCT06492616
VICC-DTBRE24171
A Master Protocol to Evaluate DCC-3009 in Gastrointestinal Stromal Tumor (GIST)
Multiple Cancer Types
The purpose of this Phase 1/2 master protocol study is to evaluate if DCC-3009 is safe, tolerable and works effectively in the treatment of GIST. The study will use a modular approach with each module being defined according to therapy: DCC-3009 alone or DCC-3009 in combination with other anticancer therapies. Each module will be conducted in 2 parts: Part 1 (Dose Escalation) and Part 2 (Dose Expansion). Participants will be treated in 28-day treatment cycles with an estimated duration of up to 2 years.
Colon,
Esophageal,
GIST,
Gastric/Gastroesophageal,
Gastrointestinal,
Liver,
Pancreatic,
Rectal
I/II
Keedy, Vicki
NCT06630234
VICC-DTSAR24137P
Phase II Panitumumab-IRDye800 in Head & Neck Cancer
Head/Neck
Head/Neck
The purpose of this study is to determine if panitumumab-IRDye800 is effective in identifying cancer, compared to surrounding normal tissue, and the further characterize the safety profile of this drug.
Head/Neck
II
Rosenthal, Eben
NCT04511078
VICCHN21109
Carmustine Wafer in Combination With Retifanlimab and Radiation With/Without Temozolomide in Subjects With Glioblastoma
Multiple Cancer Types
The purpose of the study is to evaluate the safety and survival of carmustine wafers and radiation and retifanlimab with or without temozolomide (TMZ) in newly-diagnosed adult subjects with glioblastoma multiform after carmustine wafer placement.
Neuro-Oncology,
Phase I
I
Thompson, Reid
NCT05083754
VICCNEUP22119
Colon Adjuvant Chemotherapy Based on Evaluation of Residual Disease
Multiple Cancer Types
This Phase II/III trial will evaluate the what kind of chemotherapy to recommend to patients based on the presence or absences of circulating tumor DNA (ctDNA) after surgery for colon cancer.
Colon,
Rectal
II/III
Ciombor, Kristen
NCT05174169
SWOGGI008
Testing the Addition of a New Anti-cancer Drug, M3814 (Peposertib), to the Usual Radiotherapy in Patients With Locally Advanced Pancreatic Cancer
Pancreatic
Pancreatic
This phase I/II trial studies the safety, side effects and best dose of M3814 and to see how well it works when given together with radiation therapy in treating patients with pancreatic cancer that has spread to nearby tissue or lymph nodes (locally advanced). M3814 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving M3814 and hypofractionated radiation therapy together may be safe, tolerable and/or more effective than radiation therapy alone in treating patients with locally advanced pancreatic cancer.
Pancreatic
I/II
Cardin, Dana
NCT04172532
NCIGIP10366
ResQ201A: Clinical Trial Of N-803 Plus TISLELIZUMAB And DOCETAXEL Versus DOCETAXEL Monotherapy In Participants With Advanced Or Metastatic Non-Small Cell Lung Cancer
Lung
Lung
This is a randomized, open-label, phase 3 clinical trial to compare the efficacy and safety of N-803 plus tislelizumab and docetaxel (experimental arm) versus docetaxel monotherapy (control arm). Enrolled participants will be randomized 2:1 to treatment in the experimental arm or the control arm. Participant randomization will be stratified by geographical region (North America vs Europe vs ASIA vs Other), NSCLC histology (squamous vs nonsquamous), and actionable genomic alteration (AGA); (epidermal growth factor receptor \[EGFR\]/anaplastic lymphoma kinase \[ALK\] vs OTHER AGA vs No AGA).
Lung
III
Wang, Shuai
NCT06745908
VICCTHO24569
A Study Evaluating Single-agent Inavolisib and Inavolisib Plus Atezolizumab in PIK3CA-Mutated Cancers
Multiple Cancer Types
The purpose of the study is to assess the safety and efficacy of inavolisib as a single-agent and in combination with atezolizumab in participants with phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA)-mutated cancers, including previously treated head and neck squamous cell carcinoma (HNSCC).
Head/Neck,
Phase I
I
Choe, Jennifer
NCT06496568
VICCHNP22118
Biomarker Platform (Virtual Nodule Clinic) for the Management of Indeterminate Pulmonary Nodules
Lung
Lung
This clinical trial studies whether a biomarker platform, the Virtual Nodule Clinic, can be used for the management of lung (pulmonary) nodules that are not clearly non-cancerous (benign) or clearly cancerous (malignant) (indeterminate pulmonary nodules \[IPNs\]). The management of IPNs is based on estimating the likelihood that the observed nodule is malignant. Many things, such as age, smoking history, and current symptoms, are considered when making a prediction of the likelihood of malignancy. Radiographic imaging characteristics are also considered. Lung nodule management for IPNs can result in unnecessary invasive procedures for nodules that are ultimately determined to be benign, or potential delays in treatment when results of tests cannot be determined or are falsely negative. The Virtual Nodule Clinic is an artificial intelligence (AI) based imaging software within the electronic health record which makes certain that identified pulmonary nodules are screened by clinicians with expertise in nodule management. The Virtual Nodule Clinic also features an AI based radiomic prediction score which designates the likelihood that a pulmonary nodule is malignant. This may improve the ability to manage IPNs and lower unnecessary invasive procedures or treatment delays. Using the Virtual Nodule Clinic may work better for the management of IPNs.
Lung
N/A
Maldonado, Fabien
NCT06638398
VICC-IDTHO24059