Clinical Trials Search at Vanderbilt-Ingram Cancer Center
A Phase III Trial of One vs. Two Years of Maintenance Olaparib, With or Without Bevacizumab, in Patients With BRCA1/2 Mutated or Homologous Recombination Deficient (HRD+) Ovarian Cancer Following Response to First Line Platinum Based Chemotherapy
Multiple Cancer Types
Gynecologic,
Ovarian
III
Crispens, Marta
NCT06580314
NRGGYNGY036
A First-In-Human, Phase 1, Dose-Escalation Study of SGR-3515 In Participants with Advanced Solid Tumors
Not Available
I
Gibson, Mike
NCT06463340
VICC-DTPHI24100
Phase 1 Study of INBRX-109 in Subjects With Locally Advanced or Metastatic Solid Tumors Including Sarcomas
Multiple Cancer Types
This is a first-in-human, open-label, non-randomized, three-part phase 1 trial of INBRX-109,
which is a recombinant humanized tetravalent antibody targeting the human death receptor 5
(DR5).
which is a recombinant humanized tetravalent antibody targeting the human death receptor 5
(DR5).
Miscellaneous,
Phase I
I
Davis, Elizabeth
NCT03715933
VICCMDP2287
A Study of Tucatinib With Trastuzumab and mFOLFOX6 Versus Standard of Care Treatment in First-line HER2+ Metastatic Colorectal Cancer
This study is being done to find out if tucatinib with other cancer drugs works better than
standard of care to treat participants with HER2 positive colorectal cancer. This study will
also test what side effects happen when participants take this combination of drugs. A side
effect is anything a drug does to the body besides treating your disease.
Participants in this study have colorectal cancer that has spread through the body
(metastatic) and/or cannot be removed with surgery (unresectable).
Participants will be assigned randomly to the tucatinib group or standard of care group. The
tucatinib group will get tucatinib, trastuzumab, and mFOLFOX6. The standard of care group
will get either:
- mFOLFOX6 alone,
- mFOLFOX6 with bevacizumab, or
- mFOLFOX6 with cetuximab mFOLFOX6 is a combination of multiple drugs. All of the drugs
given in this study are used to treat this type of cancer.
standard of care to treat participants with HER2 positive colorectal cancer. This study will
also test what side effects happen when participants take this combination of drugs. A side
effect is anything a drug does to the body besides treating your disease.
Participants in this study have colorectal cancer that has spread through the body
(metastatic) and/or cannot be removed with surgery (unresectable).
Participants will be assigned randomly to the tucatinib group or standard of care group. The
tucatinib group will get tucatinib, trastuzumab, and mFOLFOX6. The standard of care group
will get either:
- mFOLFOX6 alone,
- mFOLFOX6 with bevacizumab, or
- mFOLFOX6 with cetuximab mFOLFOX6 is a combination of multiple drugs. All of the drugs
given in this study are used to treat this type of cancer.
Not Available
III
Not Available
NCT05253651
VICC-DTGIT23052
A Study of ASTX030 (Cedazuridine in Combination With Azacitidine) in MDS, CMML, or AML
Multiple Cancer Types
Study ASTX030-01 is designed to move efficiently from Phase 1 to Phase 3. Phase 1 consists of
an open-label Dose Escalation Stage (Stage A) using multiple cohorts at escalating dose
levels of oral cedazuridine and azacitidine (only one study drug will be escalated at a time)
followed by a Dose Expansion Stage (Stage B) of ASTX030. Phase 2 is a randomized open-label
crossover study to compare oral ASTX030 to subcutaneous (SC) azacitidine. Phase 3 is a
randomized open-label crossover study comparing the final oral ASTX030 dose to SC
azacitidine. The duration of the study is expected to be approximately 48 months.
an open-label Dose Escalation Stage (Stage A) using multiple cohorts at escalating dose
levels of oral cedazuridine and azacitidine (only one study drug will be escalated at a time)
followed by a Dose Expansion Stage (Stage B) of ASTX030. Phase 2 is a randomized open-label
crossover study to compare oral ASTX030 to subcutaneous (SC) azacitidine. Phase 3 is a
randomized open-label crossover study comparing the final oral ASTX030 dose to SC
azacitidine. The duration of the study is expected to be approximately 48 months.
Leukemia,
Myelodysplastic Syndrome,
Phase I
I/II/III
Savona, Michael
NCT04256317
VICCHEMP19146
A Study to Evaluate the Safety and Tolerability of TOS-358 in Adults With Select Solid Tumors
Multiple Cancer Types
The goal of this clinical trial is to evaluate the safety of TOS-358 in adults with select
solid tumors who meet study enrollment criteria. The main questions it aims to answer are:
1. what is the maximum tolerated dose and recommended dose for phase 2?
2. how safe and tolerable is TOS-358 at different dose levels when taken orally once or
twice per day?
solid tumors who meet study enrollment criteria. The main questions it aims to answer are:
1. what is the maximum tolerated dose and recommended dose for phase 2?
2. how safe and tolerable is TOS-358 at different dose levels when taken orally once or
twice per day?
Breast,
Cervical,
Gastrointestinal,
Gynecologic,
Head/Neck,
Lung,
Phase I,
Urologic
I
Berlin, Jordan
NCT05683418
VICC-DTPHI23103
Testing the Addition of Daratumumab-Hyaluronidase to Enhance Therapeutic Effectiveness of Lenalidomide in Smoldering Multiple Myeloma, The DETER-SMM Trial
Multiple Myeloma
Multiple Myeloma
This phase III trial studies how well lenalidomide and dexamethasone works with or without daratumumab-hyaluronidase in treating patients with high-risk smoldering myeloma. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Anti-inflammatory drugs, such as dexamethasone lower the bodys immune response and are used with other drugs in the treatment of some types of cancer. Daratumumab-hyaluronidase is a monoclonal antibody, daratumumab, that may interfere with the ability of cancer cells to grow and spread, and hyaluronidase, which may help daratumumab work better by making cancer cells more sensitive to the drug. Giving lenalidomide and dexamethasone with daratumumab-hyaluronidase may work better in treating patients with smoldering myeloma.
Multiple Myeloma
III
Baljevic, Muhamed
NCT03937635
ECOGPCLEAA173
Testing the Addition of Pembrolizumab, an Immunotherapy Cancer Drug to Olaparib Alone as Therapy for Patients with Pancreatic Cancer That Has Spread with Inherited BRCA Mutations
Pancreatic
Pancreatic
This phase II trial studies whether adding pembrolizumab to olaparib (standard of care) works better than olaparib alone in treating patients with pancreatic cancer with germline BRCA1 or BRCA2 mutations that has spread to other places in the body (metastatic). BRCA1 and BRCA2 are human genes that produce tumor suppressor proteins. These proteins help repair damaged deoxyribonucleic acid (DNA) and, therefore, play a role in ensuring the stability of each cells genetic material. When either of these genes is mutated, or altered, such that its protein product is not made or does not function correctly, DNA damage may not be repaired properly. As a result, cells are more likely to develop additional genetic alterations that can lead to some types of cancer, including pancreatic cancer. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Olaparib is an inhibitor of PARP, a protein that helps repair damaged DNA. Blocking PARP may help keep tumor cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. The addition of pembrolizumab to the usual treatment of olaparib may help to shrink tumors in patients with metastatic pancreatic cancer with BRCA1 or BRCA2 mutations.
Pancreatic
II
Cardin, Dana
NCT04548752
SWOGGIS2001
Active Surveillance, Bleomycin, Etoposide, Carboplatin or Cisplatin in Treating Pediatric and Adult Patients with Germ Cell Tumors
Multiple Cancer Types
This phase III trial studies how well active surveillance help doctors to monitor subjects with low risk germ cell tumors for recurrence after their tumor is removed. When the germ cell tumors has spread outside of the organ in which it developed, it is considered metastatic. Drugs used in chemotherapy, such as bleomycin, carboplatin, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The trial studies whether carboplatin or cisplatin is the preferred chemotherapy to use in treating metastatic standard risk germ cell tumors.
Germ Cell (Pediatrics),
Gynecologic,
Ovarian
III
Borinstein, Scott
NCT03067181
COGAGCT1531
Pembrolizumab versus Observation in Patients with Early Stage Triple-Negative Breast Cancer who had a Pathologic Complete Response after Chemotherapy plus Pembrolizumab, OptimICE-PCR Trial
Breast
Breast
This phase III trial compares the effect of continuation of treatment with pembrolizumab (usual approach) to observation only at preventing cancer from coming back in patients with early-stage triple-negative breast cancer (TNBC) who achieved a pathologic complete response after preoperative chemotherapy in combination with pembrolizumab. The usual approach for patients with early-stage TNBC who receive preoperative chemotherapy plus pembrolizumab is to continue to receive pembrolizumab for up to 27 weeks after surgery. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial may help researchers determine if observation is as good as receiving pembrolizumab for 27 weeks after surgery in triple-negative breast cancer patients who achieved a pathologic complete response after preoperative treatment with chemotherapy and pembrolizumab.
Breast
III
Abramson, Vandana
NCT05812807
VICC-NTBRE23357