Clinical Trials Search at Vanderbilt-Ingram Cancer Center
Inotuzumab Ozogamicin in Treating Younger Patients With B-Lymphoblastic Lymphoma or Relapsed or Refractory CD22 Positive B Acute Lymphoblastic Leukemia
This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
Not Available
II
Not Available
NCT02981628
COGAALL1621
Gabapentin & Ketamine for Prevention/Treatment of Acute/Chronic Pain in Locally Advanced Head and Neck Cancer
Multiple Cancer Types
This is a study to establish a safe and feasible dose for prophylactic use of a combination of gabapentin and ketamine in head and neck cancer patients undergoing chemoradiation.
Head/Neck,
Phase I
I/II
Lockney, Natalie
NCT05156060
VICCHNP2173
Surgical Debulking Prior to Peptide Receptor Radionuclide Therapy in Well Differentiated Gastroenteropancreatic Neuroendocrine Tumors
Multiple Cancer Types
This phase IV trial evaluates how well giving standard of care (SOC) peptide receptor radionuclide therapy (PRRT) after SOC surgical removal of as much tumor as possible (debulking surgery) works in treating patients with grade 1 or 2, somatostatin receptor (SSTR) positive, gastroenteropancreatic neuroendocrine tumors (GEP-NETs) that have spread from where they first started (primary site) to the liver (hepatic metastasis). Lutetium Lu 177 dotatate is a radioactive drug that uses targeted radiation to kill tumor cells. Lutetium Lu 177 dotatate includes a radioactive form (an isotope) of the element called lutetium. This radioactive isotope (Lu-177) is attached to a molecule called dotatate. On the surface of GEP-NET tumor cells, a receptor called a somatostatin receptor binds to dotatate. When this binding occurs, the lutetium Lu 177 dotatate drug then enters somatostatin receptor-positive tumor cells, and radiation emitted by Lu-177 helps kill the cells. Giving lutetium Lu 177 dotatate after surgical debulking may better treat patients with grade 1/2 GEP-NETs
Colon,
Esophageal,
Gastric/Gastroesophageal,
Gastrointestinal,
Liver,
Pancreatic,
Rectal
N/A
Idrees, Kamran
NCT06016855
VICCGI2283
Genetic Testing to Select Therapy for the Treatment of Advanced or Metastatic Kidney Cancer, OPTIC RCC Study
Kidney (Renal Cell)
Kidney (Renal Cell)
This phase II trial tests whether using genetic testing of tumor tissue to select the optimal treatment regimen works in treating patients with clear cell renal cell (kidney) cancer that has spread to other places in the body (advanced or metastatic). The current Food and Drug Administration (FDA)-approved regimens for advanced kidney cancer fall into two categories. One treatment combination includes two immunotherapy drugs (nivolumab plus ipilimumab), which are delivered by separate intravenous infusions into a vein. The other combination is one immunotherapy drug (nivolumab infusion) plus an oral pill taken by mouth (cabozantinib). Nivolumab and ipilimumab are "immunotherapies" which release the brakes of the immune system, thus allowing the patient's own immune system to better kill cancer cells. Cabozantinib is a "targeted therapy" specifically designed to block certain biological mechanisms needed for growth of cancer cells. In kidney cancer, cabozantinib blocks a tumor's blood supply. The genetic (DNA) makeup of the tumor may affect how well it responds to therapy. Testing the makeup (genes) of the tumor, may help match a treatment (from one of the above two treatment options) to the specific cancer and increase the chance that the disease will respond to treatment. The purpose of this study is to learn if genetic testing of tumor tissue may help doctors select the optimal treatment regimen to which advanced kidney cancer is more likely to respond.
Kidney (Renal Cell)
II
Rini, Brian
NCT05361720
VICCURO21103
Canakinumab for the Prevention of Progression to Cancer in Patients With Clonal Cytopenias of Unknown Significance, IMPACT Study
Leukemia
Leukemia
This phase II trial tests how well canakinumab works to prevent progression to cancer in patients with clonal cytopenias of unknown significance (CCUS). CCUS is a blood condition defined by a decrease in blood cells. Blood cells are composed of either red blood cells, white blood cells, or platelets. In patients with CCUS, blood counts have been low for a long period of time. Patients with CCUS also have a mutation in one of the genes that are responsible for helping blood cells develop. The combination of genetic mutations and low blood cell counts puts patients with CCUS at a higher risk to develop blood cancers in the future. This transformation from low blood cell counts to cancer may be caused by inflammation in the body. Canakinumab is a monoclonal antibody that may block inflammation in the body by targeting a specific antibody called the anti-human interleukin-1beta (IL-1beta).
Leukemia
II
Kishtagari, Ashwin
NCT05641831
VICC-ITHEM23019
A Study to Evaluate the Safety, Tolerability of INCB160058 in Participants With Myeloproliferative Neoplasms
This study is being conducted to assess the Safety, Tolerability, and Pharmacokinetics of INCB160058 in Participants With Myeloproliferative Neoplasms.
Not Available
I
Kishtagari, Ashwin
NCT06313593
VICC-DTHEM24055P
Study of SGR-3515 In Participants With Advanced Solid Tumors.
The purpose of this study is to learn about the effects of a new study drug, called SGR-3515 that may be a treatment for advanced solid tumors.
Not Available
I
Gibson, Mike
NCT06463340
VICC-DTPHI24100
Gene Signatures to Guide HR+MBC Therapy in a Diverse Cohort
Breast
Breast
This is an open-label, multicenter, two-arm Phase II clinical trial that will evaluate the impact of 2nd line chemotherapy (i.e. capecitabine) on survival in patients with non-Luminal A hormone receptor-positive (HR+) metastatic breast cancer (MBC)
Breast
II
Reid, Sonya
NCT05693766
VICCBRE2256
A Study of ASP3082 in Adults With Advanced Solid Tumors
Phase I
Phase I
This is an open-label study. This means that people in this study and clinic staff will know that they will receive ASP3082. The study aims to check how safe and well-tolerated ASP3082 is for people with advanced solid tumors that have a specific mutation called KRAS G12D.
This study will be in 2 parts.
In Part 1, different small groups of people will receive lower to higher doses of ASP3082 by itself, or together with cetuximab. Any medical problems will be recorded at each dose. This is done to find suitable doses of ASP3082, by itself or together with cetuximab, to use in Part 2 of the study. The first group will receive the lowest dose of ASP3082. A medical expert panel will check the results from this group and decide if the next group can receive a higher dose of ASP3082. The panel will do this for each group until all groups have received ASP3082 (by itself or together with cetuximab) or until suitable doses have been selected for Part 2.
In Part 2, ASP3082 will be given in by itself, or in combination with the other study treatments.
Study treatments will be given through a vein. This is called an infusion. Each treatment cycle is 21 or 28 days long. They will continue treatment until: they have medical problems from the treatment they can't tolerate; their cancer gets worse; they start other cancer treatment; or they ask to stop treatment.
This study will be in 2 parts.
In Part 1, different small groups of people will receive lower to higher doses of ASP3082 by itself, or together with cetuximab. Any medical problems will be recorded at each dose. This is done to find suitable doses of ASP3082, by itself or together with cetuximab, to use in Part 2 of the study. The first group will receive the lowest dose of ASP3082. A medical expert panel will check the results from this group and decide if the next group can receive a higher dose of ASP3082. The panel will do this for each group until all groups have received ASP3082 (by itself or together with cetuximab) or until suitable doses have been selected for Part 2.
In Part 2, ASP3082 will be given in by itself, or in combination with the other study treatments.
Study treatments will be given through a vein. This is called an infusion. Each treatment cycle is 21 or 28 days long. They will continue treatment until: they have medical problems from the treatment they can't tolerate; their cancer gets worse; they start other cancer treatment; or they ask to stop treatment.
Phase I
I
Berlin, Jordan
NCT05382559
VICCPHI2207
Two Studies for Patients With Unfavorable Intermediate Risk Prostate Cancer Testing Less Intense Treatment for Patients With a Low Gene Risk Score and Testing a More Intense Treatment for Patients With a Higher Gene Risk Score, The Guidance Trial
Prostate
Prostate
This phase III trial uses the Decipher risk score to guide therapy selection. Decipher score is based on the activity of 22 genes in prostate tumor and may predict how likely it is for recurrent prostate cancer to spread (metastasize) to other parts of the body. Decipher score in this study is used for patient selection and the two variations of treatment to be studied: intensification for higher Decipher score or de-intensification for low Decipher score. Patients with higher Decipher risk score will be assigned to the part of the study that compares the use of 6 months of the usual treatment (hormone therapy and radiation treatment) to the use of darolutamide plus the usual treatment (intensification). The purpose of this section of the study is to determine whether the additional drug can reduce the chance of cancer coming back and spreading in patients with higher Decipher score. The addition of darolutamide to the usual treatment may better control the cancer and prevent it from spreading. Alternatively, patients with low Decipher risk score will be assigned to the part of the study that compares the use of radiation treatment alone (de-intensification) to the usual approach (6 months of hormone therapy plus radiation). The purpose of this part of the study is to determine if radiation treatment alone is as effective compared to the usual treatment without affecting the chance of tumor coming back in patients with low Decipher score prostate cancer. Radiation therapy uses high energy to kill tumor cells and reduce the tumor size. Hormone therapy drugs such as darolutamide suppress or block the production or action of male hormones that play role in prostate cancer development. Effect of radiation treatment alone in patients with low Decipher score prostate cancer could be the same as the usual approach in stabilizing prostate cancer and preventing it from spreading, while avoiding the side effects associated with hormonal therapy.
Prostate
III
Kirschner, Austin
NCT05050084
VICC-NTURO23322