Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Safety and Efficacy of ALLO-501A Anti-CD19 Allogeneic CAR T Cells in Adults with Relapsed/Refractory Large B Cell Lymphoma, Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma (ALPHA2)

This is a single-arm, open label, multicenter Phase 1/2 study evaluating ALLO-501A in adult subjects with R/R LBCL and CLL/SLL. The purpose of the ALPHA2 study is to assess the safety, efficacy, and cell kinetics of ALLO-501A in adults with relapsed or refractory large B-cell lymphoma and assess the safety of ALLO-501A in adults with relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) after a lymphodepletion regimen comprising fludarabine, cyclophosphamide, and ALLO-647.
Not Available
II
Jallouk, Andrew
NCT04416984
VICC-DTCTT24008

A Study of [177Lu]Lu-DOTA-TATE in Newly Diagnosed ES-SCLC Patients in Combination With Carboplatin, Etoposide and Atezolizumab

This study aims to establish a safe and well tolerated dose of \[177Lu\]Lu-DOTA-TATE in combination with carboplatin, etoposide and atezolizumab in this setting and to assess preliminary efficacy of this combination treatment versus the combination of carboplatin, etoposide, and atezolizumab.The study will be essential to assess a new potential therapeutic option in participants with this aggressive cancer type.
Not Available
I/II
Ramirez, Robert
NCT05142696
VICC-DTTHO24168P

Comparing the Combination of Selinexor-Daratumumab-Velcade-Dexamethasone (Dara-SVD) With the Usual Treatment (Dara-RVD) for High-Risk Newly Diagnosed Multiple Myeloma

This phase II trial compares the combination of selinexor, daratumumab and hyaluronidase-fihj (daratumumab), velcade (bortezomib), and dexamethasone (Dara-SVD) to the usual treatment of daratumumab, lenalidomide, bortezomib, and dexamethasone (Dara-RVD) in treating patients with high-risk newly diagnosed multiple myeloma. Selinexor is in a class of medications called selective inhibitors of nuclear export (SINE). It works by blocking a protein called CRM1, which may keep cancer cells from growing and may kill them. Daratumumab is in a class of medications called monoclonal antibodies. It binds to a protein called CD38, which is found on some types of immune cells and cancer cells, including myeloma cells. Daratumumab may block CD38 and help the immune system kill cancer cells. Bortezomib blocks several molecular pathways in a cell and may cause cancer cells to die. It is a type of proteasome inhibitor and a type of dipeptidyl boronic acid. Dexamethasone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Lenalidomide is in a class of medications called immunomodulatory agents. It works by helping the bone marrow to produce normal blood cells and by killing abnormal cells in the bone marrow. The drugs daratumumab, lenalidomide, bortezomib, dexamethasone and selinexor are already approved by the Food and Drug Administration for use in myeloma. But selinexor is not used until myeloma comes back (relapses) after initial treatment. Giving selinexor in the initial treatment may be a superior type of treatment for patients with high-risk newly diagnosed multiple myeloma.
Not Available
II
Baljevic, Muhamed
NCT06169215
VICC-NTPCL23525

Docetaxel to Androgen Receptor Pathway Inhibitors in Patients With Metastatic Castration Sensitive Prostate Cancer and Suboptimal PSA Response

Prostate

This study is being done to answer the following question: can the chance of prostate cancer growing or spreading be lowered by adding a drug to the usual combination of drugs?

This study would like to find out if this approach is better or worse than the usual approach for prostate cancer.

The usual approach for patients who are not in a study is hormone treatment with Androgen Deprivation Therapy (ADT) and Androgen-Receptor Pathway Inhibitor (ARPI).
Prostate
III
Schaffer, Kerry
NCT06592924
ALLUROCCTGPR26

Expanded Access Study for the Treatment of Patients With Commercially Out-of-Specification Axicabtagene Ciloleucel

Lymphoma

The goal of this study is to provide access to axicabtagene ciloleucel for patients diagnosed with a disease approved for treatment with axicabtagene ciloleucel, that is otherwise out of specification for commercial release.
Lymphoma
N/A
Jallouk, Andrew
NCT05776160
VICC-XDCTT23452

Long-term Follow-up Study for Participants of Kite-Sponsored Interventional Studies Treated With Gene-Modified Cells

Multiple Cancer Types

The goal of this clinical study is to learn more about the long-term safety, effectiveness and prolonged action of Kite study drugs, axicabtagene ciloleucel, brexucabtagene autoleucel, KITE-363, KITE-753, KITE-197, and anitocabtagene autoleucel in participants of Kite-sponsored interventional studies.
Hematologic, Leukemia, Lymphoma, Pediatric Leukemia, Pediatric Lymphoma
N/A
Kassim, Adetola
NCT05041309
VICCCTT2170

Expanded Access Program of AMTAGVI That is Out of Specification for Commercial Release

Melanoma

The objective of this expanded access protocol is to provide access to Out Of Specification (OOS) AMTAGVI treatment to patients.
Melanoma
N/A
Johnson, Douglas
NCT05398640
VICCMEL24579

A Study of Treatment for Medulloblastoma Using Sodium Thiosulfate to Reduce Hearing Loss

This phase III trial tests two hypotheses in patients with low-risk and average-risk medulloblastoma. Medulloblastoma is a type of cancer that occurs in the back of the brain. The term, risk, refers to the chance of the cancer coming back after treatment. Subjects with low-risk medulloblastoma typically have a lower chance of the cancer coming back than subjects with average-risk medulloblastoma. Although treatment for newly diagnosed average-risk and low-risk medulloblastoma is generally effective at treating the cancer, there are still concerns about the side effects of such treatment. Side effects or unintended health conditions that arise due to treatment include learning difficulties, hearing loss or other issues in performing daily activities. Standard therapy for newly diagnosed average-risk or low-risk medulloblastoma includes surgery, radiation therapy, and chemotherapy (including cisplatin). Cisplatin may cause hearing loss as a side effect. In the average-risk medulloblastoma patients, this trial tests whether the addition of sodium thiosulfate (STS) to standard of care chemotherapy and radiation therapy reduces hearing loss. Previous studies with STS have shown that it may help reduce or prevent hearing loss caused by cisplatin. In the low-risk medulloblastoma patients, the study tests whether a less intense therapy (reduced radiation) can provide the same benefits as the more intense therapy. The less intense therapy may cause fewer side effects. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. The overall goals of this study are to see if giving STS along with standard treatment (radiation therapy and chemotherapy) will reduce hearing loss in medulloblastoma patients and to compare the overall outcome of patients with medulloblastoma treated with STS to patients treated without STS on a previous study in order to make sure that survival and recurrence of tumor is not worsened.
Not Available
III
Not Available
NCT05382338
VICC-NTPED23124

Measuring if Immunotherapy Plus Chemotherapy is Better Than Chemotherapy Alone for Patients With Aggressive Poorly Differentiated Sarcomas

This phase III trial compares the effect of immunotherapy (pembrolizumab) plus chemotherapy (doxorubicin) to chemotherapy (doxorubicin) alone in treating patients with dedifferentiated liposarcoma (DDLPS), undifferentiated pleomorphic sarcoma (UPS) or a related poorly differentiated sarcoma that has spread from where it first started (primary site) to other places in the body (metastatic) or that cannot be removed by surgery (unresectable). Doxorubicin is in a class of medications called anthracyclines. Doxorubicin damages the cell's deoxyribonucleic acid (DNA) and may kill tumor cells. It also blocks a certain enzyme needed for cell division and DNA repair. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Adding immunotherapy (pembrolizumab) to the standard chemotherapy (doxorubicin) may help patients with metastatic or unresectable DDLPS, UPS or a related poorly differentiated sarcoma live longer without having disease progression.
Not Available
III
Davis, Elizabeth
NCT06422806
VICC-NTSAR24139

A Study With Tovorafenib (DAY101) as a Treatment Option for Progressive, Relapsed, or Refractory Langerhans Cell Histiocytosis

This phase II trial tests the safety, side effects, best dose and activity of tovorafenib (DAY101) in treating patients with Langerhans cell histiocytosis that is growing, spreading, or getting worse (progressive), has come back (relapsed) after previous treatment, or does not respond to therapy (refractory). Langerhans cell histiocytosis is a type of disease that occurs when the body makes too many immature Langerhans cells (a type of white blood cell). When these cells build up, they can form tumors in certain tissues and organs including bones, skin, lungs and pituitary gland and can damage them. This tumor is more common in children and young adults. DAY101 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Using DAY101 may be effective in treating patients with relapsed or refractory Langerhans cell histiocytosis.
Not Available
II
Not Available
NCT05828069
VICC-NTPED24012

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.