Clinical Trials Search at Vanderbilt-Ingram Cancer Center
P-CD19CD20-ALLO1 Allogeneic CAR-T Cells in the Treatment of Subjects With B Cell Malignancies
Lymphoma
Lymphoma
Phase 1 study comprised of open-label, dose escalation and expansion cohort study of P-CD19CD20-ALLO1 allogeneic T stem cell memory (Tscm) CAR-T cells in subjects with relapsed/refractory B cell malignancies
Lymphoma
I
Dholaria, Bhagirathbhai
NCT06014762
VICC-DTCTT23163P
Disposable Perfusion Phantom for Accurate DCE (Dynamic Contrast Enhanced)-MRI Measurement of Pancreatic Cancer Therapy Response
Pancreatic
Pancreatic
The goal of this study is to investigate whether the therapeutic response of pancreatic tumors can be accurately assessed using quantitative DCE-MRI, when the inter/intra-scanner variability is reduced using the Point-of-care Portable Perfusion Phantom, P4. The intra-scanner variability over time leads to errors in therapy monitoring, while the inter-scanner variability impedes the comparison of data among institutes. The P4 is small enough to be imaged concurrently in the bore of a standard MRI scanner with a patient for real-time quality assurance. The P4 is safe, inexpensive and easily operable, thus it has great potential for widespread and routine clinical use for accurate diagnosis, prognosis and therapy monitoring.
This study has identified two arms, one arm is healthy individuals that will undergo DCE MRI at three different MRI locations to establish baseline results. The healthy volunteers will undergo these MRIs prior to the second arm, which contains patients with pancreatic cancer. The pancreatic cancer patients will only have DCE MRI done at one location.
This study has identified two arms, one arm is healthy individuals that will undergo DCE MRI at three different MRI locations to establish baseline results. The healthy volunteers will undergo these MRIs prior to the second arm, which contains patients with pancreatic cancer. The pancreatic cancer patients will only have DCE MRI done at one location.
Pancreatic
N/A
Xu, Junzhong
NCT04588025
VICCGI2099
Testing Nivolumab and Ipilimumab Immunotherapy With or Without the Targeted Drug Cabozantinib in Recurrent, Metastatic, or Incurable Nasopharyngeal Cancer
Head/Neck
Head/Neck
This phase II trial tests how well nivolumab and ipilimumab immunotherapy with or without cabozantinib works in treating patients with nasopharyngeal cancer that has come back (after a period of improvement) (recurrent), has spread from where it first started (primary site) to other places in the body (metastatic), or for which no treatment is currently available (incurable). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving immunotherapy with nivolumab and ipilimumab and targeted therapy with cabozantinib may help shrink and stabilize nasopharyngeal cancer.
Head/Neck
II
Choe, Jennifer
NCT05904080
ALLHNA092105
Testing What Happens When an Immunotherapy Drug (Pembrolizumab) is Given by Itself Compared to the Usual Treatment of Chemotherapy With Radiation After Surgery for Recurrent Head and Neck Squamous Cell Carcinoma
Head/Neck
Head/Neck
This phase II trial studies the effect of pembrolizumab alone compared to the usual approach (chemotherapy \[cisplatin and carboplatin\] plus radiation therapy) after surgery in treating patients with head and neck squamous cell carcinoma that has come back (recurrent) or patients with a second head and neck cancer that is not from metastasis (primary). Radiation therapy uses high energy radiation or protons to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. Carboplatin is also in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab alone after surgery may work better than the usual approach in shrinking recurrent or primary head and neck squamous cell carcinoma.
Head/Neck
II
Choe, Jennifer
NCT04671667
ECOGHNEA3191
A Study of PHST001 in Advanced Solid Tumors
Miscellaneous
Miscellaneous
PHST001-101 is a multicenter, open-label, Phase 1 study of PHST001 in patients with advanced solid tumors. The study design includes a Dose Escalation Phase and a Dose Expansion Phase, and will enroll patients with advanced relapsed and/or refractory solid tumors. The study's primary object is to evaluate the safety and tolerability of PHST001 and determine the RP2D (Recommended Phase 2 dose) of PHST001.
Miscellaneous
I
Davis, Elizabeth
NCT06840886
VICCPHI24591
SMP-3124LP in Adults With Advanced Solid Tumors
Multiple Cancer Types
An Open-label, Phase I Dose Escalation and Phase 2 Dose Expansion Study to Assess Safety, Tolerability, Preliminary Antitumor Activity of SMP 3124LP in Adults with Advanced Solid Tumors
Breast,
Head/Neck,
Lung,
Non Small Cell,
Ovarian,
Phase I,
Uterine
I/II
Eng, Cathy
NCT06526819
VICC-DTPHI23348
Radiotherapy to Block Oligoprogression In Metastatic Non-Small-Cell Lung Cancer
Lung
Lung
This study is being done to answer the following question: Can the chance of lung cancer growing or spreading be lowered by adding targeted radiotherapy to the usual combination of drugs?
This study is being done to find out if this approach is better or worse than the usual approach for lung cancer. The usual approach is defined as the care most people get for non-small cell lung cancer.
This study is being done to find out if this approach is better or worse than the usual approach for lung cancer. The usual approach is defined as the care most people get for non-small cell lung cancer.
Lung
III
Osmundson, Evan
NCT06686771
NRGTHOCCTGBR38
High-Resolution Specimen PET-CT Imaging for the Intraoperative Visualization of Resection Margins: An Exploratory Study
Miscellaneous
Miscellaneous
Miscellaneous
I
Topf, Michael
VICCHNP24616
Pilot Study Assessment of Bone Mineral Density Changes During Treatment with Anti-PD-1 Immunotherapy Agents
Miscellaneous
Miscellaneous
Miscellaneous
N/A
Sharpe, Jessica
VICCMD25019
A Study to Compare Standard Chemotherapy to Therapy With CPX-351 and/or Gilteritinib for Patients With Newly Diagnosed AML With or Without FLT3 Mutations
This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
Not Available
III
Not Available
NCT04293562
COGAAML1831