A Study to Compare Standard Chemotherapy to Therapy with CPX-351 and/or Gilteritinib for Patients with Newly Diagnosed AML with or without FLT3 Mutations
This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
Not Available
III
Not Available
NCT04293562
COGAAML1831
Testing the Addition of Abemaciclib to Olaparib for Women with Recurrent Ovarian Cancer
This phase I/Ib trial identifies the side effects and best dose of abemaciclib when given together with olaparib in treating patients with ovarian cancer that responds at first to treatment with drugs that contain the metal platinum but then comes back within a certain period (recurrent platinum-resistant). Abemaciclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Olaparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep tumor cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Adding abemaciclib to olaparib may work better to treat recurrent platinum-resistant ovarian cancer.
Not Available
I
Crispens, Marta
NCT04633239
VICC-NTGYN24186P
Palbociclib and Binimetinib in RAS-Mutant Cancers, A ComboMATCH Treatment Trial
This phase II clinical trial evaluates the effectiveness of palbociclib and binimetinib in treating patients with RAS-mutated cancers. Palbociclib and binimetinib are both in a class of medications called kinase inhibitors. They work by blocking the action of abnormal proteins that signals cancer cells to multiply. This trial may help researchers understand if giving the combination of palbociclib and binimetinib can help improve the amount of time before the cancer grows in patients with patients with low grade serous ovarian cancer who have certain changes in the tumor DNA. This trial may also help researchers understand if giving the combination of palbociclib and binimetinib can help improve outcomes among patients with low grade serous ovarian cancer who have previously received a MEK inhibitor. For patients with other tumors, with the exception of lung cancer, colon cancer, melanoma and low grade serous ovarian cancers, this trial may help researchers understand if giving the combination of palbociclib and binimetinib can improve the clinical outcome of survival without progression in patients who have certain changes in their tumors DNA.
Not Available
II
Choe, Jennifer
NCT05554367
ECOGMDEAY191-A3
Study of LY3537982 in Cancer Patients With a Specific Genetic Mutation (KRAS G12C)
The purpose of this study is to find out whether the study drug, LY3537982, is safe and
effective in cancer patients who have a specific genetic mutation (KRAS G12C). Patients must
have already received or were not able to tolerate the standard of care, except for specific
groups who have not had cancer treatment. The study will last up to approximately 4 years.
effective in cancer patients who have a specific genetic mutation (KRAS G12C). Patients must
have already received or were not able to tolerate the standard of care, except for specific
groups who have not had cancer treatment. The study will last up to approximately 4 years.
Not Available
I/II
Not Available
NCT04956640
VICCTHOP2155
A Study with Tovorafenib (DAY101) as a Treatment Option for Progressive, Relapsed, or Refractory Langerhans Cell Histiocytosis
This phase II trial tests the safety, side effects, best dose and activity of tovorafenib (DAY101) in treating patients with Langerhans cell histiocytosis that is growing, spreading, or getting worse (progressive), has come back (relapsed) after previous treatment, or does not respond to therapy (refractory). Langerhans cell histiocytosis is a type of disease that occurs when the body makes too many immature Langerhans cells (a type of white blood cell). When these cells build up, they can form tumors in certain tissues and organs including bones, skin, lungs and pituitary gland and can damage them. This tumor is more common in children and young adults. DAY101 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Using DAY101 may be effective in treating patients with relapsed or refractory Langerhans cell histiocytosis.
Not Available
II
Not Available
NCT05828069
VICC-NTPED24012
Combining Radiation Therapy with Immunotherapy for the Treatment of Metastatic Squamous Cell Carcinoma of the Head and Neck
This phase III trial compares pembrolizumab with radiation therapy to pembrolizumab without radiation therapy (standard therapy) given after pembrolizumab plus chemotherapy for the treatment of patients with squamous cell carcinoma of the head and neck that has spread from where it first started (primary site) to other places in the body (metastatic). Pembrolizumab is a type of immunotherapy that stimulates the body's immune system to fight cancer cells. Pembrolizumab targets and blocks a protein called PD-1 on the surface of certain immune cells called T-cells. Blocking PD-1 triggers the T-cells to find and kill cancer cells. Radiation therapy uses high-powered rays to kill cancer cells. Giving radiation with pembrolizumab may be more effective at treating patients with metastatic head and neck cancer than the standard therapy of giving pembrolizumab alone.
Not Available
III
Choe, Jennifer
NCT05721755
ECOGHNEA3211
Testing the Role of DNA Released from Tumor Cells into the Blood in Guiding the Use of Immunotherapy after Surgical Removal of the Bladder for Bladder Cancer Treatment, MODERN Study
This phase II/III trial tests the role of DNA released from tumor cells into the blood in guiding the use of immunotherapy (nivolumab alone or with relatlimab) after surgical removal of the bladder for bladder cancer treatment. DNA is material found inside all of our cells that acts as a blueprint for how cells function. Tumor cells often have abnormal DNA that looks different than DNA in normal cells. A new test called Signatera has been developed that can detect bladder cancer DNA in the blood which might indicate the presence of bladder tumor cells somewhere in the body. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Relatlimab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. This trial may help doctors determine if the Signatera test can better identify which patients need an additional treatment with immunotherapy to help prevent bladder cancer from coming back after surgery.
Not Available
II/III
Tan, Alan
NCT05987241
ALLUROA032103
TPIV100 and Sargramostim for the Treatment of HER2 Positive, Stage I-III Breast Cancer in Patients with Residual Disease after Chemotherapy and Surgery
This phase II trial studies how well TPIV100 and sargramostim work in treating patients with HER2 positive, stage I-III breast cancer that has residual disease after chemotherapy prior to surgery. It also studies why some HER2 positive breast cancer patients respond better to chemotherapy in combination with trastuzumab and pertuzumab. TPIV100 is a type of vaccine made from HER2 peptide that may help the body build an effective immune response to kill tumor cells that express HER2. Sargramostim increases the number of white blood cells in the body following chemotherapy for certain types of cancer and is used to alert the immune system. It is not yet known if TPIV100 and sargramostim will work better in treating patients with HER2 positive, stage I-III breast cancer.
Not Available
II
Not Available
NCT04197687
VICCBRE2241
Study of RYZ101 Compared With SOC in Pts w Inoperable SSTR+ Well-differentiated GEP-NET That Has Progressed Following 177Lu-SSA Therapy
This study aims to determine the safety, pharmacokinetics (PK) and recommended Phase 3 dose
(RP3D) of RYZ101 in Part 1, and the safety, efficacy, and PK of RYZ101 compared with
investigator-selected standard of care (SoC) therapy in Part 2 in subjects with inoperable,
advanced, well-differentiated, somatostatin receptor expressing (SSTR+)
gastroenteropancreatic neuroendocrine tumors (GEP-NETs) that have progressed following
treatment with Lutetium 177-labelled somatostatin analogue (177Lu-SSA) therapy, such as
177Lu-DOTATATE or 177Lu-DOTATOC (177Lu-DOTATATE/TOC), or 177Lu-high affinity [HA]-DOTATATE.
(RP3D) of RYZ101 in Part 1, and the safety, efficacy, and PK of RYZ101 compared with
investigator-selected standard of care (SoC) therapy in Part 2 in subjects with inoperable,
advanced, well-differentiated, somatostatin receptor expressing (SSTR+)
gastroenteropancreatic neuroendocrine tumors (GEP-NETs) that have progressed following
treatment with Lutetium 177-labelled somatostatin analogue (177Lu-SSA) therapy, such as
177Lu-DOTATATE or 177Lu-DOTATOC (177Lu-DOTATATE/TOC), or 177Lu-high affinity [HA]-DOTATATE.
Not Available
I/III
Not Available
NCT05477576
VICCGIP2209
Testing the use of AMG 510 (Sotorasib) and Panitumumab as a Targeted Treatment for KRAS G12C Mutant Solid Tumor Cancers (A ComboMATCH Treatment Trial)
This phase II ComboMATCH treatment trial tests how well AMG 510 (sotorasib) with or without panitumumab works in treating patients with KRAS G12C mutant solid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Sotorasib is in a class of medications called KRAS inhibitors. It works by blocking the action of the abnormal protein that signals cancer cells to multiply. This helps stop or slow the spread of cancer cells. Panitumumab is in a class of medications called monoclonal antibodies. It works by slowing or stopping the growth of cancer cells. Giving combination panitumumab and sotorasib may kill more tumor cells in patients with advanced solid tumors with KRAS G12C mutation.
Not Available
II
Choe, Jennifer
NCT05638295
ECOGMDEAY191-E5