LEGEND Study: EG-70 in NMIBC Patients BCG-Unresponsive and High-Risk NMIBC Incompletely Treated With BCG or BCG-Nave
This study will evaluate the safety and efficacy of intravesical administration of EG-70 in the bladder and its effect on bladder tumors in patients with NMIBC.
This study study consists of two phases; a Phase 1 dose-escalation to establish safety and recommended the phase 2 dose, followed by a Phase 2 study to establish how effective the treatment is.
The Study will include patients with NMIBC with Cis for whom BCG therapy is unresponsive and patients with NMIBC with Cis who are BCG-nave or inadequately treated.
This study study consists of two phases; a Phase 1 dose-escalation to establish safety and recommended the phase 2 dose, followed by a Phase 2 study to establish how effective the treatment is.
The Study will include patients with NMIBC with Cis for whom BCG therapy is unresponsive and patients with NMIBC with Cis who are BCG-nave or inadequately treated.
Not Available
I/II
Chang, Sam
NCT04752722
VICC-DDURO24102P
A Study Using Risk Factors to Determine Treatment for Children With Favorable Histology Wilms Tumors (FHWT)
This phase III trial studies using risk factors in determining treatment for children with favorable tissue (histology) Wilms tumors (FHWT). Wilms Tumor is the most common type of kidney cancer in children, and FHWT is the most common subtype. Previous large clinical trials have established treatment plans that are likely to cure most children with FHWT, however some children still have their cancer come back (called relapse) and not all survive. Previous research has identified features of FHWT that are associated with higher or lower risks of relapse. The term "risk" refers to the chance of the cancer coming back after treatment. Using results of tumor histology tests, biology tests, and response to therapy may be able to improve treatment for children with FHWT.
Not Available
III
Not Available
NCT06401330
COGAREN2231
Testing the Addition of Abemaciclib to Olaparib for Women With Recurrent Ovarian Cancer
This phase I/Ib trial identifies the side effects and best dose of abemaciclib when given together with olaparib in treating patients with ovarian cancer that responds at first to treatment with drugs that contain the metal platinum but then comes back within a certain period (recurrent platinum-resistant). Abemaciclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Olaparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep tumor cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Adding abemaciclib to olaparib may work better to treat recurrent platinum-resistant ovarian cancer.
Not Available
I
Crispens, Marta
NCT04633239
VICC-NTGYN24186P
Expanded Access Study for the Treatment of Patients With Commercially Out-of-Specification Axicabtagene Ciloleucel
Lymphoma
Lymphoma
The goal of this study is to provide access to axicabtagene ciloleucel for patients diagnosed with a disease approved for treatment with axicabtagene ciloleucel, that is otherwise out of specification for commercial release.
Lymphoma
N/A
Jallouk, Andrew
NCT05776160
VICC-XDCTT23452
Inotuzumab Ozogamicin in Treating Younger Patients With B-Lymphoblastic Lymphoma or Relapsed or Refractory CD22 Positive B Acute Lymphoblastic Leukemia
This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
Not Available
II
Not Available
NCT02981628
COGAALL1621
Testing the Use of AMG 510 (Sotorasib) and Panitumumab as a Targeted Treatment for KRAS G12C Mutant Solid Tumor Cancers (A ComboMATCH Treatment Trial)
This phase II ComboMATCH treatment trial tests how well AMG 510 (sotorasib) with or without panitumumab works in treating patients with KRAS G12C mutant solid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Sotorasib is in a class of medications called KRAS inhibitors. It works by blocking the action of the abnormal protein that signals cancer cells to multiply. This helps stop or slow the spread of cancer cells. Panitumumab is in a class of medications called monoclonal antibodies. It works by slowing or stopping the growth of cancer cells. Giving combination panitumumab and sotorasib may kill more tumor cells in patients with advanced solid tumors with KRAS G12C mutation.
Not Available
II
Choe, Jennifer
NCT05638295
ECOGMDEAY191-E5
Testing the Addition of the Anti-cancer Drug Venetoclax and/or the Anti-cancer Immunotherapy Blinatumomab to the Usual Chemotherapy Treatment for Infants With Newly Diagnosed KMT2A-rearranged or KMT2A-non-rearranged Leukemia
Leukemia
Leukemia
This phase II trial tests the addition of venetoclax and/or blinatumomab to usual chemotherapy for treating infants with newly diagnosed acute lymphoblastic leukemia (ALL) with a KMT2A gene rearrangement (KMT2A-rearranged \[R\]) or without a KMT2A gene rearrangement (KMT2A-germline \[G\]). Venetoclax is in a class of medications called B-cell lymphoma-2 (Bcl-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Blinatumomab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Chemotherapy drugs work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding venetoclax and/or blinatumomab to standard chemotherapy may be more effective at treating patients with ALL than standard chemotherapy alone, but it may also cause more side effects. This clinical trial evaluates the safety and effectiveness of adding venetoclax and/or blinatumomab to chemotherapy for the treatment of infants with KMT2A-R or KMT2A-G ALL.
Leukemia
II
Smith, Brianna
NCT06317662
COGAALL2321
Carmustine Wafer in Combination With Retifanlimab and Radiation With/Without Temozolomide in Subjects With Glioblastoma
Multiple Cancer Types
The purpose of the study is to evaluate the safety and survival of carmustine wafers and radiation and retifanlimab with or without temozolomide (TMZ) in newly-diagnosed adult subjects with glioblastoma multiform after carmustine wafer placement.
Neuro-Oncology,
Phase I
I
Thompson, Reid
NCT05083754
VICCNEUP22119
A Study of Treatment for Medulloblastoma Using Sodium Thiosulfate to Reduce Hearing Loss
This phase III trial tests two hypotheses in patients with low-risk and average-risk medulloblastoma. Medulloblastoma is a type of cancer that occurs in the back of the brain. The term, risk, refers to the chance of the cancer coming back after treatment. Subjects with low-risk medulloblastoma typically have a lower chance of the cancer coming back than subjects with average-risk medulloblastoma. Although treatment for newly diagnosed average-risk and low-risk medulloblastoma is generally effective at treating the cancer, there are still concerns about the side effects of such treatment. Side effects or unintended health conditions that arise due to treatment include learning difficulties, hearing loss or other issues in performing daily activities. Standard therapy for newly diagnosed average-risk or low-risk medulloblastoma includes surgery, radiation therapy, and chemotherapy (including cisplatin). Cisplatin may cause hearing loss as a side effect. In the average-risk medulloblastoma patients, this trial tests whether the addition of sodium thiosulfate (STS) to standard of care chemotherapy and radiation therapy reduces hearing loss. Previous studies with STS have shown that it may help reduce or prevent hearing loss caused by cisplatin. In the low-risk medulloblastoma patients, the study tests whether a less intense therapy (reduced radiation) can provide the same benefits as the more intense therapy. The less intense therapy may cause fewer side effects. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. The overall goals of this study are to see if giving STS along with standard treatment (radiation therapy and chemotherapy) will reduce hearing loss in medulloblastoma patients and to compare the overall outcome of patients with medulloblastoma treated with STS to patients treated without STS on a previous study in order to make sure that survival and recurrence of tumor is not worsened.
Not Available
III
Not Available
NCT05382338
VICC-NTPED23124
(89Zr Panitumumab) With PET/CT for Diagnosing Metastases in Patients With Head and Neck Squamous Cell Carcinoma
Head/Neck
Head/Neck
The goal of this phase I clinical trial is to evaluate the usefulness of an imaging test (zirconium Zr89 panitumumab \[89Zr panitumumab\]) with positron emission tomography (PET)/computed tomography (CT) for diagnosing the spread of disease from where it first started (primary site) to other places in the body (metastasis) in patients with head and neck squamous cell carcinoma. Traditional PET/CT has a low positive predictive value for diagnosing metastatic disease in head and neck cancer. 89Zr panitumumab is an investigational imaging agent that contains radiolabeled anti-EGFR antibody which is overexpressed in head and neck cancer. The main question this study aims to answer is the sensitivity and specificity of 89Zr panitumumab for the detection of indeterminate metastatic lesions in head and neck cancer.
Participants will receive 89Zr panitumumab infusion and undergo 89Zr panitumumab PET/CT 1 to 5 days after infusion. Participants will otherwise receive standard of care evaluation and treatment for their indeterminate lesions.
Researchers will compare the 89Zr panitumumab to standard of care imaging modalities (magnetic resonance imaging (MRI), CT, and/or PET/CT).
Participants will receive 89Zr panitumumab infusion and undergo 89Zr panitumumab PET/CT 1 to 5 days after infusion. Participants will otherwise receive standard of care evaluation and treatment for their indeterminate lesions.
Researchers will compare the 89Zr panitumumab to standard of care imaging modalities (magnetic resonance imaging (MRI), CT, and/or PET/CT).
Head/Neck
I
Topf, Michael
NCT05747625
VICCHN2279