A Study Evaluating the Efficacy and Safety of Multiple Treatment Combinations in Patients With Metastatic or Locally Advanced Breast Cancer
Multiple Cancer Types
This is an umbrella study evaluating the efficacy and safety of multiple treatment
combinations in participants with metastatic or inoperable locally advanced breast cancer.
The study will be performed in two stages. During Stage 1, four cohorts will be enrolled in
parallel in this study:
Cohort 1 will consist of Programmed death-ligand 1 (PD-L1)-positive participants who have
received no prior systemic therapy for metastatic or inoperable locally advanced
triple-negative breast cancer (TNBC) (first-line [1L] PD-L1+ cohort).
Cohort 2 will consist of participants who had disease progression during or following 1L
treatment with chemotherapy for metastatic or inoperable locally-advanced TNBC and have not
received cancer immunotherapy (CIT) (second-line [2L] CIT-naive cohort).
Cohort 3 will consist of participants with locally-advanced or metastatic HR+, HER2-negative
disease with PIK3CA mutation who may or may not have had disease progression during or
following previous lines of treatment for metastatic disease (HR+cohort).
Cohort 4 will consist of participants with locally-advanced or metastatic HER2+ /HER2-low
disease with PIK3CA mutation who had disease progression on standard-of-care therapies (HER2+
/HER2-low cohort).
In each cohort, eligible participants will initially be assigned to one of several treatment
arms (Stage 1). In addition, participants in the 2L CIT-nave cohort who experience disease
progression, loss of clinical benefit, or unacceptable toxicity during Stage 1 may be
eligible to continue treatment with a different treatment combination (Stage 2), provided
Stage 2 is open for enrollment.
combinations in participants with metastatic or inoperable locally advanced breast cancer.
The study will be performed in two stages. During Stage 1, four cohorts will be enrolled in
parallel in this study:
Cohort 1 will consist of Programmed death-ligand 1 (PD-L1)-positive participants who have
received no prior systemic therapy for metastatic or inoperable locally advanced
triple-negative breast cancer (TNBC) (first-line [1L] PD-L1+ cohort).
Cohort 2 will consist of participants who had disease progression during or following 1L
treatment with chemotherapy for metastatic or inoperable locally-advanced TNBC and have not
received cancer immunotherapy (CIT) (second-line [2L] CIT-naive cohort).
Cohort 3 will consist of participants with locally-advanced or metastatic HR+, HER2-negative
disease with PIK3CA mutation who may or may not have had disease progression during or
following previous lines of treatment for metastatic disease (HR+cohort).
Cohort 4 will consist of participants with locally-advanced or metastatic HER2+ /HER2-low
disease with PIK3CA mutation who had disease progression on standard-of-care therapies (HER2+
/HER2-low cohort).
In each cohort, eligible participants will initially be assigned to one of several treatment
arms (Stage 1). In addition, participants in the 2L CIT-nave cohort who experience disease
progression, loss of clinical benefit, or unacceptable toxicity during Stage 1 may be
eligible to continue treatment with a different treatment combination (Stage 2), provided
Stage 2 is open for enrollment.
Breast,
Phase I
I/II
Kennedy, Laura
NCT03424005
VICCBREP2126
Heated Intraperitoneal Chemotherapy Followed by Niraparib for Ovarian, Primary Peritoneal and Fallopian Tube Cancer
Ovarian
Ovarian
Patients will be registered prior to, during or at the completion of neoadjuvant chemotherapy
(Paclitaxel 175 mg/m2 IV over 3 hours and Carboplatin AUC 6 IV on Day 1 every 21 days for 3-4
cycles). Registered patients who progress during neoadjuvant chemotherapy will not be
eligible for iCRS and will be removed from the study.
Following completion of neoadjuvant chemotherapy, interval cytoreductive surgery (iCRS) will
be performed in the usual fashion in both arms. Patients will be randomized at the time of
iCRS (iCRS must achieve no gross residual disease or no disease >1.0 cm in largest diameter)
to receive HIPEC or no HIPEC. Patients randomized to HIPEC (Arm A) will receive a single dose
of cisplatin (100mg/m2 IP over 90 minutes at 42 C) as HIPEC. After postoperative recovery
patients will receive standard post-operative platinum-based combination chemotherapy.
Patients randomized to surgery only (Arm B) will receive postoperative standard chemotherapy
after recovery from surgery.
Both groups will receive an additional 2-3 cycles of platinum-based combination chemotherapy
per institutional standard (Paclitaxel 175 mg/m2 IV over 3 hours and Carboplatin AUC 6 IV on
Day 1 every 21 days for 2-3 cycles) for a maximum total of 6 cycles of chemotherapy
(neoadjuvant plus post-operative cycles) followed by niraparib individualized dosing until
progression or 36 months (if no evidence of disease).
(Paclitaxel 175 mg/m2 IV over 3 hours and Carboplatin AUC 6 IV on Day 1 every 21 days for 3-4
cycles). Registered patients who progress during neoadjuvant chemotherapy will not be
eligible for iCRS and will be removed from the study.
Following completion of neoadjuvant chemotherapy, interval cytoreductive surgery (iCRS) will
be performed in the usual fashion in both arms. Patients will be randomized at the time of
iCRS (iCRS must achieve no gross residual disease or no disease >1.0 cm in largest diameter)
to receive HIPEC or no HIPEC. Patients randomized to HIPEC (Arm A) will receive a single dose
of cisplatin (100mg/m2 IP over 90 minutes at 42 C) as HIPEC. After postoperative recovery
patients will receive standard post-operative platinum-based combination chemotherapy.
Patients randomized to surgery only (Arm B) will receive postoperative standard chemotherapy
after recovery from surgery.
Both groups will receive an additional 2-3 cycles of platinum-based combination chemotherapy
per institutional standard (Paclitaxel 175 mg/m2 IV over 3 hours and Carboplatin AUC 6 IV on
Day 1 every 21 days for 2-3 cycles) for a maximum total of 6 cycles of chemotherapy
(neoadjuvant plus post-operative cycles) followed by niraparib individualized dosing until
progression or 36 months (if no evidence of disease).
Ovarian
III
Crispens, Marta
NCT05659381
VICC-DTGYN23355
Adding Nivolumab to Usual Treatment for People with Advanced Stomach or Esophageal Cancer, The PARAMMUNE Trial
This phase II/III trial compares the addition of nivolumab to the usual treatment of paclitaxel and ramucirumab to paclitaxel and ramucirumab alone in treating patients with gastric or esophageal adenocarcinoma that that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Ramucirumab is a monoclonal antibody that may prevent the growth of new blood vessels that tumors need to grow. Paclitaxel is in a class of medications called antimicrotubule agents. It stops cancer cells from growing and dividing and may kill them. Adding nivolumab to ramucirumab and paclitaxel may work better to treat patients with advanced stomach or esophageal cancer.
Not Available
II/III
Agarwal, Rajiv
NCT06203600
SWOGGIS2303
P-CD19CD20-ALLO1 Allogeneic CAR-T Cells in the Treatment of Subjects With B Cell Malignancies
Lymphoma
Lymphoma
Phase 1 study comprised of open-label, dose escalation and expansion cohort study of
P-CD19CD20-ALLO1 allogeneic T stem cell memory (Tscm) CAR-T cells in subjects with
relapsed/refractory B cell malignancies
P-CD19CD20-ALLO1 allogeneic T stem cell memory (Tscm) CAR-T cells in subjects with
relapsed/refractory B cell malignancies
Lymphoma
I
Dholaria, Bhagirathbhai
NCT06014762
VICC-DTCTT23163P
Safety and Tolerability of Ziftomenib Combinations in Patients With Relapsed/Refractory Acute Myeloid Leukemia
The safety, tolerability, and antileukemic response of ziftomenib in combination with
standard of care treatments for patients with relapsed/refractory acute myeloid leukemia will
be examined with the following agents: FLAG-IDA, low-dose cytarabine, and gilteritinib.
standard of care treatments for patients with relapsed/refractory acute myeloid leukemia will
be examined with the following agents: FLAG-IDA, low-dose cytarabine, and gilteritinib.
Not Available
I
Fedorov, Kateryna
NCT06001788
VICC-DTHEM23484P
Testing Chemotherapy versus Chemotherapy plus Radiotherapy Prior to Limited Surgery for Early Rectal Cancer
This phase III trial compares the effect of the combination of fluorouracil, oxaliplatin, and leucovorin calcium (FOLFOX) or capecitabine and oxaliplatin (CAPOX) followed by limited surgery with transanal endoscopic surgery (TES) versus chemoradiation followed by TES for the treatment of early stage rectal cancer. The usual approach for patients who are not in a study is surgery to remove the rectum or treatment with chemotherapy and radiation therapy, followed by surgery. Fluorouracil stops cells from making deoxyribonucleic acid (DNA) and it may kill tumor cells. Leucovorin is in a class of medications called folic acid analogs. When used with fluorouracil, it enhances the effects of this chemotherapy drug. Oxaliplatin is in a class of medications called platinum-containing antineoplastic agents. It damages the cells DNA and may kill cancer cells. CAPOX is a combination of two drugs (capecitabine and oxaliplatin) and used as standard chemotherapy in treatment of rectal cancer. CAPOX works by damaging the DNA in tumor cells, and may cause the cells to stop growing and die. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill tumor cells and shrink tumors. This study will help researchers find out if chemotherapy with FOLFOX or CAPOX prior to surgery works better, the same, or worse than the usual approach and improves the quality of life in patients with early rectal cancer.
Not Available
III
Eng, Cathy
NCT06205485
SWOGGICO32
Dinutuximab with Chemotherapy, Surgery and Stem Cell Transplantation for the Treatment of Children with Newly Diagnosed High Risk Neuroblastoma
This phase III trial tests how well adding dinutuximab to induction chemotherapy along with standard of care surgery radiation and stem cell transplantation works for treating children with newly diagnosed high risk neuroblastoma. Dinutuximab is a monoclonal antibody that binds to a molecule called GD2, which is found in greater than normal amounts on some types of cancer cells. This helps cells of the immune system kill the cancer cells. Chemotherapy drugs such as cyclophosphamide, topotecan, cisplatin, etoposide, vincristine, dexrazoxane, doxorubicin, temozolomide, irinotecan and isotretinoin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing or by stopping them from spreading. During induction, chemotherapy and surgery are used to kill and remove as much tumor as possible. During consolidation, very high doses of chemotherapy are given to kill any remaining cancer cells. This chemotherapy also destroys healthy bone marrow, where blood cells are made. A stem cell transplant is a procedure that helps the body make new healthy blood cells to replace the blood cells that may have been harmed by the cancer and/or chemotherapy. Radiation therapy is also given to the site where the cancer originated (primary site) and to any other areas that are still active at the end of induction.
Not Available
III
Benedetti, Daniel
NCT06172296
VICC-NTPED24104
A Study of ASTX030 (Cedazuridine in Combination With Azacitidine) in MDS, CMML, or AML
Multiple Cancer Types
Study ASTX030-01 is designed to move efficiently from Phase 1 to Phase 3. Phase 1 consists of
an open-label Dose Escalation Stage (Stage A) using multiple cohorts at escalating dose
levels of oral cedazuridine and azacitidine (only one study drug will be escalated at a time)
followed by a Dose Expansion Stage (Stage B) of ASTX030. Phase 2 is a randomized open-label
crossover study to compare oral ASTX030 to subcutaneous (SC) azacitidine. Phase 3 is a
randomized open-label crossover study comparing the final oral ASTX030 dose to SC
azacitidine. The duration of the study is expected to be approximately 48 months.
an open-label Dose Escalation Stage (Stage A) using multiple cohorts at escalating dose
levels of oral cedazuridine and azacitidine (only one study drug will be escalated at a time)
followed by a Dose Expansion Stage (Stage B) of ASTX030. Phase 2 is a randomized open-label
crossover study to compare oral ASTX030 to subcutaneous (SC) azacitidine. Phase 3 is a
randomized open-label crossover study comparing the final oral ASTX030 dose to SC
azacitidine. The duration of the study is expected to be approximately 48 months.
Leukemia,
Myelodysplastic Syndrome,
Phase I
I/II/III
Savona, Michael
NCT04256317
VICCHEMP19146
P-BCMA-ALLO1 Allogeneic CAR-T Cells in the Treatment of Subjects With Multiple Myeloma
Multiple Cancer Types
Phase 1 study comprised of open-label, dose escalation, multiple cohorts of P-BCMA-ALLO1
allogeneic T stem cell memory (Tscm) CAR-T cells in subjects with relapsed / refractory
Multiple Myeloma (RRMM).
allogeneic T stem cell memory (Tscm) CAR-T cells in subjects with relapsed / refractory
Multiple Myeloma (RRMM).
Multiple Myeloma,
Phase I
I
Dholaria, Bhagirathbhai
NCT04960579
VICCCTTP2232
A Study of E7386 in Combination With Other Anticancer Drug in Participants With Solid Tumor
Multiple Cancer Types
The primary objective of this study is to assess the safety and tolerability and to determine
the recommended Phase 2 dose (RP2D) of E7386 in combination with other anticancer drug(s).
the recommended Phase 2 dose (RP2D) of E7386 in combination with other anticancer drug(s).
Gynecologic,
Liver,
Phase I
I
Crispens, Marta
NCT04008797
VICC-DTPHI23106