Skip to main content

Displaying 21 - 30 of 40

A Phase I/Ib Study Evaluating Single-Agent Inavolisib and Inavolisib Plus Atezolizumab in PIK3CA-Mutated Cancers

Multiple Cancer Types

Head/Neck, Phase I
I
Choe, Jennifer
NCT06496568
VICCHNP22118

An Open Label, Expanded Access Protocol using 131I-Metaiodobenzylguanidine (131I-MIBG) Therapy in Patients with Refractory Neuroblastoma, Pheochromocytoma, or Paraganglioma

Multiple Cancer Types

Neuroblastoma (Pediatrics), Pediatric Solid Tumors
N/A
Kitko, Carrie
NCT01590680
VICCPED1249

CRISPR-Edited Allogeneic Anti-CD19 CAR-T Cell Therapy for Relapsed/Refractory B Cell Non-Hodgkin Lymphoma (ANTLER)

Multiple Cancer Types

CB010A is a study evaluating safety, emerging efficacy, pharmacokinetics and immunogenicity
of CB-010 in adults with relapsed/refractory B cell non-Hodgkin lymphoma after
lymphodepletion consisting of cyclophosphamide and fludarabine.
Lymphoma, Phase I
I
Oluwole, Olalekan
NCT04637763
VICC-DTCTT23155P

Tiragolumab and Atezolizumab for the Treatment of Relapsed or Refractory SMARCB1 or SMARCA4 Deficient Tumors

Pediatrics

This phase I/II trial studies how well tiragolumab and atezolizumab works when given to children and adults with SMARCB1 or SMARCA4 deficient tumors that that has either come back (relapsed) or does not respond to therapy (refractory). SMARCB1 or SMARCA4 deficiency means that tumor cells are missing the SMARCB1 and SMARCA4 genes, seen with some aggressive cancers that are typically hard to treat. Immunotherapy with monoclonal antibodies, such as tiragolumab and atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
Pediatrics
I/II
Borinstein, Scott
NCT05286801
COGPEPN2121

Venetoclax in Children With Relapsed Acute Myeloid Leukemia (AML)

Multiple Cancer Types

A study to evaluate if the randomized addition of venetoclax to a chemotherapy backbone
(fludarabine/cytarabine/gemtuzumab ozogamicin [GO]) improves survival of
children/adolescents/young adults with acute myeloid leukemia (AML) in 1st relapse who are
unable to receive additional anthracyclines, or in 2nd relapse.
Pediatric Leukemia, Pediatrics
III
Smith, Christine
NCT05183035
VICCPED2237

A Study to Evaluate the Safety and Tolerability of TOS-358 in Adults With Select Solid Tumors

Multiple Cancer Types

The goal of this clinical trial is to evaluate the safety of TOS-358 in adults with select
solid tumors who meet study enrollment criteria. The main questions it aims to answer are:

1. what is the maximum tolerated dose and recommended dose for phase 2?

2. how safe and tolerable is TOS-358 at different dose levels when taken orally once or
twice per day?
Breast, Cervical, Gastrointestinal, Gynecologic, Head/Neck, Lung, Phase I, Urologic
I
Berlin, Jordan
NCT05683418
VICC-DTPHI23103

Phase 1b Combo w/ Ribociclib and Alpelisib

Multiple Cancer Types

This is a Phase 1b open-label, 2-part study in 2 treatment groups. The 2 treatment groups are
as follows:

Treatment Group 1: OP-1250 in combination with ribociclib (KISQALI, Novartis Pharmaceuticals
Corporation).

Treatment Group 2: OP-1250 in combination with alpelisib (PIQRAY, Novartis Pharmaceuticals
Corporation).
Breast, Phase I
I
Abramson, Vandana
NCT05508906
VICCBREP2267

Hormonal Therapy after Pertuzumab and Trastuzumab for the Treatment of Hormone Receptor Positive, HER2 Positive Breast Cancer, the ADEPT study

Breast

This phase II trial studies the effect of hormonal therapy given after (adjuvant) combination pertuzumab/trastuzumab in treating patients with hormone receptor positive, HER2 positive breast cancer. The drugs trastuzumab and pertuzumab are both monoclonal antibodies, which are disease-fighting proteins made by cloned immune cells. Estrogen can cause the growth of breast cancer cells. Hormonal therapy, such as letrozole, anastrozole, exemestane, and tamoxifen, block the use of estrogen by the tumor cells. Giving hormonal therapy after pertuzumab and trastuzumab may kill any remaining tumor cells in patients with breast cancer.
Breast
II
Abramson, Vandana
NCT04569747
VICCBRE2243

Testing the Addition of Daratumumab-Hyaluronidase to Enhance Therapeutic Effectiveness of Lenalidomide in Smoldering Multiple Myeloma, The DETER-SMM Trial

Multiple Myeloma

This phase III trial studies how well lenalidomide and dexamethasone works with or without daratumumab-hyaluronidase in treating patients with high-risk smoldering myeloma. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Anti-inflammatory drugs, such as dexamethasone lower the bodys immune response and are used with other drugs in the treatment of some types of cancer. Daratumumab-hyaluronidase is a monoclonal antibody, daratumumab, that may interfere with the ability of cancer cells to grow and spread, and hyaluronidase, which may help daratumumab work better by making cancer cells more sensitive to the drug. Giving lenalidomide and dexamethasone with daratumumab-hyaluronidase may work better in treating patients with smoldering myeloma.
Multiple Myeloma
III
Baljevic, Muhamed
NCT03937635
ECOGPCLEAA173

Active Surveillance, Bleomycin, Etoposide, Carboplatin or Cisplatin in Treating Pediatric and Adult Patients with Germ Cell Tumors

Multiple Cancer Types

This phase III trial studies how well active surveillance help doctors to monitor subjects with low risk germ cell tumors for recurrence after their tumor is removed. When the germ cell tumors has spread outside of the organ in which it developed, it is considered metastatic. Drugs used in chemotherapy, such as bleomycin, carboplatin, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The trial studies whether carboplatin or cisplatin is the preferred chemotherapy to use in treating metastatic standard risk germ cell tumors.
Germ Cell (Pediatrics), Gynecologic, Ovarian
III
Borinstein, Scott
NCT03067181
COGAGCT1531