Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



A Study Using Risk Factors to Determine Treatment for Children With Favorable Histology Wilms Tumors (FHWT)

This phase III trial studies using risk factors in determining treatment for children with favorable tissue (histology) Wilms tumors (FHWT). Wilms Tumor is the most common type of kidney cancer in children, and FHWT is the most common subtype. Previous large clinical trials have established treatment plans that are likely to cure most children with FHWT, however some children still have their cancer come back (called relapse) and not all survive. Previous research has identified features of FHWT that are associated with higher or lower risks of relapse. The term "risk" refers to the chance of the cancer coming back after treatment. Using results of tumor histology tests, biology tests, and response to therapy may be able to improve treatment for children with FHWT.
Not Available
III
Not Available
NCT06401330
COGAREN2231

A Study to Assess Adverse Events of Intravenously (IV) Infused ABBV-383 in Adult Participants With Relapsed or Refractory Multiple Myeloma

Multiple Myeloma (MM) is a cancer of the blood's plasma cells ( blood cell). The cancer is typically found in the bones and bone marrow (the spongy tissue inside of the bones) and can cause bone pain, fractures, infections, weaker bones, and kidney failure. Treatments are available, but MM can come back (relapsed) or may not get better (refractory) with treatment. This is a study to determine adverse events and change in disease symptoms of ABBV-383 in adult participants with relapsed/refractory (R/R) MM.

ABBV-383 is an investigational drug being developed for the treatment of R/R Multiple Myeloma (MM). This study is broken into 3 Arms; Arm A (Parts 1 and 2), Arm B and Arm C. Arm A includes 2 parts: step-up dose optimization (Part 1) and dose expansion (Part 2). In Part 1, different level of step-up doses are tested followed by the target dose of ABBV-383. In Part 2, the step-up dose identified in Part 1 (Dose A) will be used followed by the target dose A of ABBV-383. In Arm B a flat dose of ABBV-383 will be tested. "In Arm C, the step-up dose identified in Arm A will be used followed by the target dose of ABBV-383 to investigate outpatient administration of ABBV-383. Around 180 adult participants with relapsed/refractory multiple myeloma will be enrolled at approximately 40 sites across the world.

Participants will receive ABBV-383 as an infusion into the vein in 28 day cycles for approximately 3 years.

There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic. The effect of the treatment will be checked by medical assessments, blood tests, checking for side effects and questionnaires.
Not Available
I
Not Available
NCT05650632
VICC-DTPCL23010P

Anti-Lag-3 (Relatlimab) and Anti-PD-1 Blockade (Nivolumab) Versus Standard of Care (Lomustine) for the Treatment of Patients With Recurrent Glioblastoma

Neuro-Oncology

This phase II trial compares the safety, side effects and effectiveness of anti-lag-3 (relatlimab) and anti-PD-1 blockade (nivolumab) to standard of care lomustine for the treatment of patients with glioblastoma that has come back after a period of improvement (recurrent). Relatlimab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. Lomustine is a chemotherapy drug and in a class of medications called alkylating agents. It damages the cell's deoxyribonucleic acid and may kill tumor cells. Giving relatlimab and nivolumab may be safe, tolerable, and/or effective compared to standard of care lomustine in treating patients with recurrent glioblastoma.
Neuro-Oncology
II
Mohler, Alexander
NCT06325683
ALLNEUA072201

A Study Evaluating the Efficacy and Safety of Multiple Treatment Combinations in Patients With Metastatic or Locally Advanced Breast Cancer

Multiple Cancer Types

This is an umbrella study evaluating the efficacy and safety of multiple treatment combinations in participants with metastatic or inoperable locally advanced breast cancer.

The study will be performed in two stages. During Stage 1, four cohorts will be enrolled in parallel in this study:

Cohort 1 will consist of Programmed death-ligand 1 (PD-L1)-positive participants who have received no prior systemic therapy for metastatic or inoperable locally advanced triple-negative breast cancer (TNBC) (first-line \[1L\] PD-L1+ cohort).

Cohort 2 will consist of participants who had disease progression during or following 1L treatment with chemotherapy for metastatic or inoperable locally-advanced TNBC and have not received cancer immunotherapy (CIT) (second-line \[2L\] CIT-naive cohort).

Cohort 3 will consist of participants with locally-advanced or metastatic HR+, HER2-negative disease with PIK3CA mutation who may or may not have had disease progression during or following previous lines of treatment for metastatic disease (HR+cohort).

Cohort 4 will consist of participants with locally-advanced or metastatic HER2+ /HER2-low disease with PIK3CA mutation who had disease progression on standard-of-care therapies (HER2+ /HER2-low cohort).

In each cohort, eligible participants will initially be assigned to one of several treatment arms (Stage 1). In addition, participants in the 2L CIT-nave cohort who experience disease progression, loss of clinical benefit, or unacceptable toxicity during Stage 1 may be eligible to continue treatment with a different treatment combination (Stage 2), provided Stage 2 is open for enrollment.
Breast, Phase I
I/II
Kennedy, Laura
NCT03424005
VICCBREP2126

Enhanced Recovery After Surgery in Extremity Sarcoma

Sarcoma

The purpose of this study is to demonstrate the efficacy of implementing the enhanced recovery after surgery (ERAS) pathway in a prospective manner to patients undergoing surgical treatment for extremity sarcoma.
Sarcoma
N/A
Lawrenz, Joshua
NCT04461171
VICCSAR2020

Testing the Addition of a New Anti-cancer Drug, M3814 (Peposertib), to the Usual Radiotherapy in Patients With Locally Advanced Pancreatic Cancer

Pancreatic

This phase I/II trial studies the safety, side effects and best dose of M3814 and to see how well it works when given together with radiation therapy in treating patients with pancreatic cancer that has spread to nearby tissue or lymph nodes (locally advanced). M3814 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving M3814 and hypofractionated radiation therapy together may be safe, tolerable and/or more effective than radiation therapy alone in treating patients with locally advanced pancreatic cancer.
Pancreatic
I/II
Cardin, Dana
NCT04172532
NCIGIP10366

Personalized Antibody-Drug Conjugate Therapy Based on RNA and Protein Testing for the Treatment of Advanced or Metastatic Solid Tumors (The ADC MATCH Screening and Treatment Trial)

Multiple Cancer Types

This phase II ADC MATCH screening and multi-sub-study treatment trial is evaluating whether biomarker-directed treatment with one of three antibody-drug conjugates (ADCs) (sacituzumab govitecan, enfortumab vedotin, and trastuzumab deruxtecan) works in treating patients with solid tumor cancers that have high expression of the Trop-2, nectin-4, or HER2 proteins and that may have spread from where they first started (primary site) to nearby tissue, lymph nodes, or distant parts of the body (advanced) or to other places in the body (metastatic). Precision medicine is a form of medicine that uses information about a person's genes, proteins, and environment to prevent, diagnose, or treat disease in a way that is tailored to the patient. ADCs such as sacituzumab govitecan, enfortumab vedotin, and trastuzumab deruxtecan are monoclonal antibodies attached to biologically active drugs and are a form of targeted therapy. Sacituzumab govitecan is a monoclonal antibody, called sacituzumab, linked to a drug called govitecan. Sacituzumab attaches to a protein called Trop-2 on the surface of tumor cells and delivers govitecan to kill them. Enfortumab vedotin is a monoclonal antibody, enfortumab, linked to an anticancer drug called vedotin. It works by helping the immune system to slow or stop the growth of tumor cells. Enfortumab attaches to a protein called nectin-4 on tumor cells in a targeted way and delivers vedotin to kill them. Trastuzumab deruxtecan is composed of a monoclonal antibody, called trastuzumab, linked to a chemotherapy drug, called deruxtecan. Trastuzumab attaches to HER2 positive tumor cells in a targeted way and delivers deruxtecan to kill them. Personalized treatment with sacituzumab govitecan, enfortumab vedotin, or trastuzumab deruxtecan may be an effective treatment option for patients with advanced or metastatic solid tumors that screen positive for high expression of Trop-2, nectin-4, or HER2, respectively.
Adrenocortical, Bladder, Breast, Cervical, Colon, Dermatologic, Esophageal, GIST, Gastric/Gastroesophageal, Gastrointestinal, Gynecologic, Head/Neck, Kidney (Renal Cell), Liver, Lung, Melanoma, Miscellaneous, Ovarian, Pancreatic, Prostate, Rectal, Sarcoma, Thyroid, Urologic, Uterine
II
Keedy, Vicki
NCT06311214
ETCMD10397

Evexomostat Plus PI3K or AKT Inhibitor and Fulvestrant in Patients With a PI3K Alteration and HR+/Her2- Breast Cancer

This is a Phase 1b/2, open-label, parallel-arms pilot study in men and post-menopausal women with hormone receptor positive (HR+), HER2- advanced or metastatic breast cancer with an alteration in the PI3K pathway, including a mutation of the PIK3CA gene, PTEN loss, or AKT1 mutation, designed to determine the safety of evexomostat (SDX-7320) plus standard of care treatment alpelisib (BYL-719) or capivasertib and fulvestrant (each combined, the 'triplet therapy'), to measure the severity and number of hyperglycemic events, and to assess clinical, anti-tumor benefit of the triplet therapy.

The purpose of this study is:

* to characterize the safety of the triplet drug combination consisting of either alpelisib or capivasertib (per the treating oncologist's choice) and fulvestrant plus evexomostat,
* to test whether evexomostat, when given in combination with either alpelisib or capivasertib and fulvestrant will reduce the number and severity of hyperglycemic events and/or reduce the number or dose of anti-diabetic medications needed to control the hyperglycemia for metabolically normal patients and those deemed at risk for capivasertib and alpelisib-induced hyperglycemia (insulin resistance, as measured by HOMA-IR, baseline elevated HbA1c or well-controlled type 2 diabetes), and
* to assess preliminary anti-tumor efficacy for each combination and changes in key biomarkers and quality of life in this patient population.
Not Available
I/II
Rexer, Brent
NCT05455619
VICCBREP2271

Study of Targeted Therapy vs. Chemotherapy in Patients With Thyroid Cancer

Thyroid

This phase III trial compares the effect of cabozantinib versus combination dabrafenib and trametinib for the treatment of patients with differentiated thyroid cancer that does not respond to treatment (refractory) and which expresses a BRAF V600E mutation. Cabozantinib is in a class of medications called receptor tyrosine kinase inhibitors. It binds to and blocks the action of several enzymes which are often over-expressed in a variety of tumor cell types. This may help stop or slow the growth of tumor cells and blood vessels the tumor needs to survive. Dabrafenib is an enzyme inhibitor that binds to and inhibits the activity of a protein called B-raf, which may inhibit the proliferation of tumor cells which contain a mutated BRAF gene. Trametinib is also an enzyme inhibitor. It binds to and inhibits the activity of proteins called MEK 1 and 2, which play a key role in activating pathways that regulate cell growth. This may inhibit the growth of tumor cells mediated by these pathways. The usual approach for patients with thyroid cancer is targeted therapy with dabrafenib and trametinib. This trial may help researchers decide which treatment option (cabozantinib alone or dabrafenib in combination with trametinib) is safer and/or more effective in treating patients with refractory BRAF V600E-mutated differentiated thyroid cancer.
Thyroid
III
Choe, Jennifer
NCT06475989
ECOGHNEA3231

Evaluating the Addition of the Immunotherapy Drug Atezolizumab to Standard Chemotherapy Treatment for Advanced or Metastatic Neuroendocrine Carcinomas That Originate Outside the Lung

Neuroendocrine

This phase II/III trial compares the effect of immunotherapy with atezolizumab in combination with standard chemotherapy with a platinum drug (cisplatin or carboplatin) and etoposide versus standard therapy alone for the treatment of poorly differentiated extrapulmonary (originated outside the lung) neuroendocrine cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or that has spread from where it first started (primary site) to other places in the body (metastatic). The other aim of this trial is to compare using atezolizumab just at the beginning of treatment versus continuing it beyond the initial treatment. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cisplatin and carboplatin are in a class of medications known as platinum-containing compounds that work by killing, stopping or slowing the growth of cancer cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair, and it may kill cancer cells. Giving atezolizumab in combination with a platinum drug (cisplatin or carboplatin) and etoposide may work better in treating patients with poorly differentiated extrapulmonary neuroendocrine cancer compared to standard therapy with a platinum drug (cisplatin or carboplatin) and etoposide alone.
Neuroendocrine
II/III
Ramirez, Robert
NCT05058651
SWOGGIS2012

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.