Skip to main content

Patient Search

KaCrole Higgins was diagnosed with breast cancer in 2020. “In May 2020, I found a lump in my breast. I cried. By June, it was diagnosed as breast cancer, triple positive, stage 1A. While getting this cancer diagnosis was devastating, it also became an opportunity. Suddenly, the cancer gave me clarity. It gave me clarity about what was important, what was good in my life, what was toxic in my life, and what I needed to do.” Click below to read more of KaCrole’s story

https://momentum.vicc.org/2022/04/cancer-gave-me-clarity/

If Landon Ryan had been diagnosed with bilateral retinoblastoma 10, 20 or 30 years ago, she might not be here today with nearly perfect vision.Thanks to recent improvements in the treatment for this rare form of cancer that almost exclusively affects children under the age of 5, the diagnosis had the power to change Landon’s life when she was 11 months old, but not to take it — or her eyesight. Click below to learn more about Landon and her story.

https://momentum.vicc.org/2022/04/brighter-outlook/
Displaying 111 - 120 of 166

Vincristine Pharmacokinetics in Infants

Pediatrics

This pilot trial compares drug exposure levels using a new method for dosing vincristine in infants and young children compared to the standard dosing method based on body surface area (BSA) in older children. Vincristine is an anticancer drug used to a variety of childhood cancers. The doses anticancer drugs in children must be adjusted based on the size of the child because children vary significantly in size (height, weight, and BSA) and ability to metabolize drugs from infancy to adolescence. The dose of most anticancer drugs is adjusted to BSA, which is calculated from a patients weight and height. However, infants and young children have more severe side effects if the BSA is used to calculate their dose, so new dosing models have to be made to safely give anticancer drugs to the youngest patients. This new method uses a BSA-banded approach to determine the dose. Collecting blood samples before and after a dose of the drug will help researchers determine whether this new vincristine dosing method results in equivalent drug levels in the blood over time in infants and young children compared to older children.
Pediatrics
N/A
Borinstein, Scott
NCT05359237
COGPEPN22P1

An Imaging Agent (Panitumumab-IRDye800) for the Detection of Head and Neck Cancer During Surgery

Head/Neck

This phase II trial studies the effect of panitumumab-IRDye800 in detecting head and neck cancer during surgery in patients head and neck cancer. Doctors who perform surgery for head and neck cancer are well-trained in removing all of the cancer that can be seen during the operation; however, there are times when there is cancer that is so small that it cannot be seen by the surgeon. Panitumumab-IRDye800 is a combination of panitumumab and IRDye800CW. Panitumumab works by attaching to the cancer cell in a unique way that allows the drug to get into the cancer tissue. IRDye800CW is an investigational dye that, when tested in the laboratory, helps various characteristics of human tissue show up better when using a special camera. Panitumumab-IRDye800 is a combination of the drug and the dye that attaches to cancer cells and appears to make them visible to the doctor when he or she uses the special camera during the surgery. Giving panitumumab-IRDye800 may help doctors better identify cancer in the operating room.
Head/Neck
II
Rosenthal, Eben
NCT04511078
VICCHN21109

Disposable Perfusion Phantom for Accurate DCE-MRI Measurement of Pancreatic Cancer Therapy Response

Pancreatic

This trial tests the use of a disposable perfusion phantom (P4) to decrease errors in calculating the blood flow of a tissue with DCE-MRI. DCE-MRI is used calculate blood flow of various tissues including tumors. Blood flow often serves as a critical indicator showing a disease status. For example, a pancreatic tumor has typically low blood flow, so it can be used as an indicator to identify the presence of a pancreatic tumor. In addition, an effective therapy may result in the increase of blood flow in a pancreatic tumor during the early period of treatment. Therefore, DCE-MRI may be used to determine whether the undergoing therapy is effective or not by measuring the change of blood flow in the pancreatic tumor and may help doctors decide whether to continue the therapy or try a different one. Unfortunately, the measurement of blood flow using DCE-MRI is not accurate. The use of an artificial tissue, named "phantom" or P4, together with a patient may help to reduce errors in DCE-MRI because errors will affect the images of both the patient and the phantom. Because it is known how the blood flow of the phantom appears when no errors are present, the phantom may be used to detect what kinds of errors are present in the image, how many errors are present in the image, and how to remove errors from the image.
Pancreatic
N/A
Xu, Junzhong
NCT04588025
VICCGI2099

Evaluating the Use of Dual Imaging Techniques for Detection of Disease in Patients with Head and Neck Cancer

Phase I

This phase I trial evaluates the safety and effectiveness of using two imaging techniques, indium In 111 panitumumab (111In-panitumumab) with single photon emission computed tomography (SPECT)/computed tomography (CT) and panitumumab-IRDye800 fluorescence imaging during surgery (intraoperative), to detect disease in patients with head and neck cancer. 111In-panitumumab is an imaging agent made of a monoclonal antibody that has been labeled with a radioactive molecule called indium In 111. The agent targets and binds to receptors on tumor cells. This allows the cells to be visualized and assessed with SPECT/CT imaging techniques. SPECT is special type of CT scan in which a small amount of a radioactive drug is injected into a vein and a scanner is used to make detailed images of areas inside the body where the radioactive material is taken up by the cells. CT is an imaging technique for examining structures within the body by scanning them with x-rays and using a computer to construct a series of cross-sectional scans along a single axis. Panitumumab-IRDye800 is an imaging agent composed of panitumumab, a monoclonal antibody, linked to a fluorescent dye called IRDye800. Upon administration, panitumumab-IRDye800 targets and binds to receptors on tumor cells. This allows the tumor cells to be detected using fluorescence imaging during surgery. Adding 111In-panitumumab SPECT/CT imaging to intraoperative panitumumab-IRDye800 fluorescence imaging may be more effective at detecting disease in patients with head and neck cancer.
Phase I
I
Rosenthal, Eben
NCT05945875
VICC-EDHAN23204P

111In-Panitumumab for Nodal Staging in Patients with Head and Neck Cancer

Multiple Cancer Types

This phase I trial tests the safety and effectiveness of indium In 111 panitumumab (111In-panitumumab) for identifying the first lymph nodes to which cancer has spread from the primary tumor (sentinel lymph nodes) in patients with head and neck squamous cell carcinoma (HNSCC) undergoing surgery. The most important factor for survival for many cancer types is the presence of cancer that has spread to the lymph nodes (metastasis). Lymph node metastases in patients with head and neck cancer reduce the 5-year survival by half. Sometimes, the disease is too small to be found on clinical and imaging exams before surgery. 111In-panitumumab is in a class of medications called radioimmunoconjugates. It is composed of a radioactive substance (indium In 111) linked to a monoclonal antibody (panitumumab). Panitumumab binds to EGFR receptors, a receptor that is over-expressed on the surface of many tumor cells and plays a role in tumor cell growth. Once 111In-panitumumab binds to tumor cells, it is able to be seen using an imaging technique called single photon emission computed tomography/computed tomography (SPECT/CT). SPECT/CT can be used to make detailed pictures of the inside of the body and to visualize areas where the radioactive drug has been taken up by the cells. Using 111In-panitumumab with SPECT/CT imaging may improve identification of sentinel lymph nodes in patients with head and neck squamous cell cancer undergoing surgery.
Head/Neck, Phase I
I
Rosenthal, Eben
NCT05901545
VICC-EDHAN23201P

An Imaging Agent (89Zr Panitumumab) with PET/CT for Diagnosing Primary Lesions and/or Metastases in Patients with Head and Neck Squamous Cell Carcinoma

Head/Neck

This phase I trial evaluates the usefulness of an imaging agent (zirconium Zr 89 panitumumab [89Zr panitumumab]) with positron emission tomography (PET)/computed tomography (CT) for diagnosing primary tumors and/or the spread of disease from where it first started (primary site) to other places in the body (metastasis) in patients with head and neck squamous cell carcinoma. 89Zr panitumumab is an investigational imaging agent that contains a small amount of radiation, which makes it visible on PET scans. PET is an established imaging technique that utilizes small amounts of radioactivity attached to very minimal amounts of tracer, in the case of this research, 89Zr panitumumab, to allow imaging of the function of different cells and organs in the body. CT utilizes x-rays that traverse the body from the outside. CT images provide an exact outline of organs and potential disease tissue where it occurs in patients body. The combined PET/CT scanner is a special type of scanner that allows imaging of both structure (CT) and function (PET) following the injection of 89Zr panitumumab. This 89Zr panitumumab PET/CT may be useful in diagnosis of primary tumors and/or metastasis in patients with head and neck squamous cell carcinoma.
Head/Neck
I
Topf, Michael
NCT05747625
VICCHN2279

Evaluation of EBUS-TBNA versus EBUS-TBNA plus Transbronchial Mediastinal Cryobiopsy to Obtain Adequate Tissue Samples for Next Generation Sequencing, META-Gen Trial

This phase III trial compares how well endobronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA) versus EBUS-TBNA plus transbronchial mediastinal cryobiopsy works to obtain adequate tissue samples for next generation sequencing (NGS). During usual care, if there is suspicion of cancer, a procedures known as an EBUS-TBNA is done to take sample of lymph nodes to evaluate for cancer spread. If there is suspected cancer in the lymph nodes, multiple samples are taken for molecular testing (NGS) to help guide treatment decisions. It requires a certain amount of tissue to send for the molecular testing which can be achieved with EBUS-TBNA about 70% of the time. Researchers want to find out if adding a biopsy tool currently used in usual care, known as a cryoprobe, can acquire more tissue for molecular analysis. The cryoprobe uses a freezing technique to biopsy and can potentially gather larger and higher quality tissue samples than the standard EBUS-TBNA method.
Not Available
III
Maldonado, Fabien
NCT06105801
VICC-VDTHO23177

Two Studies for Patients with Unfavorable Intermediate Risk Prostate Cancer Testing Less Intense Treatment for Patients with a Low Gene Risk Score and Testing a More Intense Treatment for Patients with a Higher Gene Risk Score, The Guidance Trial

Prostate

This phase III trial uses the Decipher risk score to guide therapy selection. Decipher score is based on the activity of 22 genes in prostate tumor and may predict how likely it is for recurrent prostate cancer to spread (metastasize) to other parts of the body. Decipher score in this study is used for patient selection and the two variations of treatment to be studied: intensification for higher Decipher score or de-intensification for low Decipher score. Patients with higher Decipher risk score will be assigned to the part of the study that compares the use of 6 months of the usual treatment (hormone therapy and radiation treatment) to the use of darolutamide plus the usual treatment (intensification). The purpose of this section of the study is to determine whether the additional drug can reduce the chance of cancer coming back and spreading in patients with higher Decipher score. The addition of darolutamide to the usual treatment may better control the cancer and prevent it from spreading. Alternatively, patients with low Decipher risk score will be assigned to the part of the study that compares the use of radiation treatment alone (de-intensification) to the usual approach (6 months of hormone therapy plus radiation). The purpose of this part of the study is to determine if radiation treatment alone is as effective compared to the usual treatment without affecting the chance of tumor coming back in patients with low Decipher score prostate cancer. Radiation therapy uses high energy to kill tumor cells and reduce the tumor size. Hormone therapy drugs such as darolutamide suppress or block the production or action of male hormones that play role in prostate cancer development. Effect of radiation treatment alone in patients with low Decipher score prostate cancer could be the same as the usual approach in stabilizing prostate cancer and preventing it from spreading, while avoiding the side effects associated with hormonal therapy.
Prostate
III
Kirschner, Austin
NCT05050084
VICC-NTURO23322

Comparing the Outcome of Standard Systemic Therapy Only versus Standard Systemic therapy with either Surgery or Radiation Therapy, for Patients with Advanced Prostate cancer

Prostate

This phase III trial compare the effects of adding definitive treatment (either radiation therapy or prostate removal surgery) to standard systemic therapy in treating patients with prostate cancer that has spread to other places in the body (advanced). Removing the prostate by either surgery or radiation therapy in addition to standard systemic therapy for prostate cancer may lower the chance of the cancer growing or spreading.
Prostate
III
Schaffer, Kerry
NCT03678025
SWOGUROS1802

Using Cancer Cells in the Blood (ctDNA) to Determine the Type of Chemotherapy that will Benefit Patients who Have Had Surgery for Colon Cancer, (CIRCULATE-NORTH AMERICA)

Multiple Cancer Types

This phase II/III trial aims to determine the type of chemotherapy that will benefit patients who have had surgery for their stage II or III colon cancer based on presence or absence of circulating tumor deoxyribonucleic acid (ctDNA). In ctDNA positive patients, this trial compares the effect of usual chemotherapy versus mFOLFIRINOX. In ctDNA negative patients, this trial compares the effect of usual chemotherapy versus ctDNA testing every 3 months to determine which approach might be better to prevent colon cancer from returning. Oxaliplatin is in a class of medications called platinum-containing antineoplastic agents. It works by damaging cells DNA and may kill cancer cells. Leucovorin is in a class of medications called folic acid analogs. It works by protecting healthy cells from the effects of chemotherapy medications while allowing chemotherapy agent to enter and kill cancer cells. Fluorouracil is in a class of medications called antimetabolites. It stops cells from making DNA and may slow or stop the growth of cancer cells. Capecitabine is in a class of medications called antimetabolites. It Is taken up by cancer cells and breaks down to a substance that kills cancer cells. Irinotecan is in a class of antineoplastic medications called topoisomerase I inhibitors. It works by stopping the growth of cancer cells. This trial may help doctors determine what kind of chemotherapy to recommend to colon cancer patients based on the presence or absence of ctDNA after surgery for colon cancer.
Colon, Rectal
II/III
Ciombor, Kristen
NCT05174169
SWOGGI008