Skip to main content

Patient Search

KaCrole Higgins was diagnosed with breast cancer in 2020. “In May 2020, I found a lump in my breast. I cried. By June, it was diagnosed as breast cancer, triple positive, stage 1A. While getting this cancer diagnosis was devastating, it also became an opportunity. Suddenly, the cancer gave me clarity. It gave me clarity about what was important, what was good in my life, what was toxic in my life, and what I needed to do.” Click below to read more of KaCrole’s story

https://momentum.vicc.org/2022/04/cancer-gave-me-clarity/

If Landon Ryan had been diagnosed with bilateral retinoblastoma 10, 20 or 30 years ago, she might not be here today with nearly perfect vision.Thanks to recent improvements in the treatment for this rare form of cancer that almost exclusively affects children under the age of 5, the diagnosis had the power to change Landon’s life when she was 11 months old, but not to take it — or her eyesight. Click below to learn more about Landon and her story.

https://momentum.vicc.org/2022/04/brighter-outlook/
Displaying 71 - 80 of 166

Study of Selinexor in Combination With Ruxolitinib in Myelofibrosis

Multiple Cancer Types

This is a global, multicenter Phase 1/3 study to evaluate the efficacy and safety of
selinexor plus ruxolitinib in JAK inhibitor (JAKi) treatment-nave myelofibrosis (MF)
participants. The study will be conducted in two phases: Phase 1 (open-label) and Phase 3
(double-blind). Phase 1 (enrollment completed) was an open-label evaluation of the safety and
recommended dose (RD) of selinexor in combination with ruxolitinib and included a dose
escalation using a standard 3+3 design (Phase 1a) and a dose expansion part (Phase 1b). In
Phase 3, JAKi treatment-nave MF participants are enrolled in 2:1 ratio to receive the
combination therapy of selinexor + ruxolitinib or the combination of placebo + ruxolitinib.
Hematologic, Phase I
I/III
Mohan, Sanjay
NCT04562389
VICCHEMP2130

A Study to Evaluate INCA033989 Administered in Participants With Myeloproliferative Neoplasms

Leukemia

This study is being conducted to evaluate the safety, tolerability, dose-limiting toxicity
(DLT) and determine the maximum tolerated dose (MTD) and/or recommended dose(s) for expansion
(RDE) of INCA033989 administered in participants with myeloproliferative neoplasms.
Leukemia
I
Mohan, Sanjay
NCT06034002
VICC-DTHEM23416P

A Phase 1 Study of AB521 in Renal Cell Carcinoma and Other Solid Tumors

Multiple Cancer Types

The purpose of this study is to evaluate the safety and tolerability of AB521 when taken
alone in participants with advanced solid tumor malignancies and clear cell renal cell
carcinoma (ccRCC).
Kidney (Renal Cell), Phase I
I
Rini, Brian
NCT05536141
VICC-DTURO23168P

Nivolumab and Ipilimumab for the Treatment of Patients with Locally Advanced, Metastatic, or Unresectable Liver Cancer

This phase II trial tests whether nivolumab and ipilimumab works to shrink tumors in patients with liver cancer that has spread to nearby tissue or lymph nodes (locally advanced), has spread to other places in the body (metastatic), or cannot be removed by surgery (unresectable). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Nivolumab and ipilimumab may be effective in killing tumor cells in patients with liver cancer.
Not Available
II
Not Available
NCT05199285
VICCGI2277

A Study of BMS-986340 as Monotherapy and in Combination With Nivolumab or Docetaxel in Participants With Advanced Solid Tumors

Multiple Cancer Types

The purpose of this study is to assess the safety, tolerability, and recommended dose(s) of
BMS-986340 as monotherapy and in combination with nivolumab or docetaxel in participants with
advanced solid tumors. This study is a first-in-human (FIH) study of BMS-986340 in
participants with advanced solid tumors.
Bladder, Colon, Esophageal, Gastric/Gastroesophageal, Head/Neck, Kidney (Renal Cell), Lung, Ovarian, Pancreatic, Urologic
I/II
Berlin, Jordan
NCT04895709
VICC-DTPHI23183

Study of INBRX-106 and INBRX-106 in Combination With Pembrolizumab in Subjects With Locally Advanced or Metastatic Solid Tumors (Hexavalent OX40 Agonist)

Phase I

This is a Phase 1/2, open-label, non-randomized, 4-part Phase 1 trial to determine the safety
profile and identify the maximum tolerated dose (MTD) and/or recommended Phase 2 dose (RP2D)
of INBRX 106 administered as a single agent or in combination with the anti-PD-1 checkpoint
inhibitor (CPI) pembrolizumab (Keytruda).
Phase I
I
Davis, Elizabeth
NCT04198766
VICCPHI2135

RBS2418 Evaluation in Subjects With Unresectable or Metastatic Tumors

Phase I

RBS2418 (investigational product) is a specific immune modulator, working through
ectonucleotide pyrophosphatase/phosphodiesterase I (ENPP1), designed to lead to anti-tumor
immunity by increasing endogenous 2'-3'-cyclic guanosine monophosphate-adenosine
monophosphate (cGAMP) and adenosine triphosphate (ATP levels) and reducing adenosine
production in the tumors. RBS2418 has the potential to be an important therapeutic option for
subjects both as monotherapy and in combination with checkpoint blockade. This study is an
open-label, multi-site Phase 1a/1b study of RBS2418, a selective ENPP1 inhibitor, in
combination with pembrolizumab or as a monotherapy in subjects with advanced unresectable,
recurrent or metastatic tumors.
Phase I
I
Berlin, Jordan
NCT05270213
VICCPHI2289

Testing the Addition of Daratumumab-Hyaluronidase to Enhance Therapeutic Effectiveness of Lenalidomide in Smoldering Multiple Myeloma, The DETER-SMM Trial

Multiple Myeloma

This phase III trial studies how well lenalidomide and dexamethasone works with or without daratumumab-hyaluronidase in treating patients with high-risk smoldering myeloma. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Anti-inflammatory drugs, such as dexamethasone lower the bodys immune response and are used with other drugs in the treatment of some types of cancer. Daratumumab-hyaluronidase is a monoclonal antibody, daratumumab, that may interfere with the ability of cancer cells to grow and spread, and hyaluronidase, which may help daratumumab work better by making cancer cells more sensitive to the drug. Giving lenalidomide and dexamethasone with daratumumab-hyaluronidase may work better in treating patients with smoldering myeloma.
Multiple Myeloma
III
Baljevic, Muhamed
NCT03937635
ECOGPCLEAA173

Testing the Addition of Pembrolizumab, an Immunotherapy Cancer Drug to Olaparib Alone as Therapy for Patients with Pancreatic Cancer That Has Spread with Inherited BRCA Mutations

Pancreatic

This phase II trial studies whether adding pembrolizumab to olaparib (standard of care) works better than olaparib alone in treating patients with pancreatic cancer with germline BRCA1 or BRCA2 mutations that has spread to other places in the body (metastatic). BRCA1 and BRCA2 are human genes that produce tumor suppressor proteins. These proteins help repair damaged deoxyribonucleic acid (DNA) and, therefore, play a role in ensuring the stability of each cells genetic material. When either of these genes is mutated, or altered, such that its protein product is not made or does not function correctly, DNA damage may not be repaired properly. As a result, cells are more likely to develop additional genetic alterations that can lead to some types of cancer, including pancreatic cancer. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Olaparib is an inhibitor of PARP, a protein that helps repair damaged DNA. Blocking PARP may help keep tumor cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. The addition of pembrolizumab to the usual treatment of olaparib may help to shrink tumors in patients with metastatic pancreatic cancer with BRCA1 or BRCA2 mutations.
Pancreatic
II
Cardin, Dana
NCT04548752
SWOGGIS2001

Active Surveillance, Bleomycin, Etoposide, Carboplatin or Cisplatin in Treating Pediatric and Adult Patients with Germ Cell Tumors

Multiple Cancer Types

This phase III trial studies how well active surveillance help doctors to monitor subjects with low risk germ cell tumors for recurrence after their tumor is removed. When the germ cell tumors has spread outside of the organ in which it developed, it is considered metastatic. Drugs used in chemotherapy, such as bleomycin, carboplatin, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The trial studies whether carboplatin or cisplatin is the preferred chemotherapy to use in treating metastatic standard risk germ cell tumors.
Germ Cell (Pediatrics), Gynecologic, Ovarian
III
Borinstein, Scott
NCT03067181
COGAGCT1531