This phase II trial tests how well evaluating circulating tumor deoxyribonucleic acid (ctDNA) works to guide therapy-change decisions in treating patients with triple-negative breast cancer (TNBC) that has spread from where it first started (primary site) to other places in the body (metastatic). This study wants to learn if small pieces of DNA associated with a tumor (called circulating tumor DNA, or ctDNA) can be detected in investigational blood tests during the course of standard chemotherapy treatment for breast cancer, and whether information from such investigational ctDNA blood testing could possibly be used as an early indication of chemotherapy treatment failure. It is hoped that additional information from investigational blood testing for ctDNA could help doctors to switch more quickly from a standard chemotherapy treatment that typically has significant side effects and which may not be working, to a different standard treatment regimen against TNBC, called sacituzumab govitecan. Sacituzumab govitecan is a monoclonal antibody, called hRS7, linked to a chemotherapy drug, called irinotecan. hRS7 is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as TROP2 receptors, and delivers irinotecan to kill them. Studying ctDNA may assist doctors to change therapy earlier if needed, and may improve health outcomes in patients with metastatic TNBC.
This study aims to determine the safety, pharmacokinetics (PK) and recommended Phase 3 dose
(RP3D) of RYZ101 in Part 1, and the safety, efficacy, and PK of RYZ101 compared with
investigator-selected standard of care (SoC) therapy in Part 2 in subjects with inoperable,
advanced, well-differentiated, somatostatin receptor expressing (SSTR+)
gastroenteropancreatic neuroendocrine tumors (GEP-NETs) that have progressed following
treatment with Lutetium 177-labelled somatostatin analogue (177Lu-SSA) therapy, such as
177Lu-DOTATATE or 177Lu-DOTATOC (177Lu-DOTATATE/TOC), or 177Lu-high affinity [HA]-DOTATATE.
This phase I/II trial studies the side effects, safety, and effectiveness of low dose radiation to the entire body (total body irradiation [TBI]) and higher dose radiation to known areas of cancer (hypofractionated radiation therapy [H-RT]) combined with atezolizumab and chemotherapy (carboplatin & etoposide) in treating patients with small cell lung cancer that has spread to disease sites outside of the lung (extensive stage). Extensive stage disease has historically been treated with chemotherapy alone with consideration of chest (thoracic) radiation therapy for those with response to chemotherapy, as well as consideration of preventative radiation therapy to the head (prophylactic cranial irradiation). Emerging evidence supports the synergistic interactions between immunotherapy and radiation therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill tumor cells. Combining TBI and H-RT with atezolizumab and chemotherapy may improve response to treatment.
RBS2418 (investigational product) is a specific immune modulator, working through
ectonucleotide pyrophosphatase/phosphodiesterase I (ENPP1), designed to lead to anti-tumor
immunity by increasing endogenous 2'-3'-cyclic guanosine monophosphate-adenosine
monophosphate (cGAMP) and adenosine triphosphate (ATP levels) and reducing adenosine
production in the tumors. RBS2418 has the potential to be an important therapeutic option for
subjects both as monotherapy and in combination with checkpoint blockade. This study is an
open-label, multi-site Phase 1a/1b study of RBS2418, a selective ENPP1 inhibitor, in
combination with pembrolizumab or as a monotherapy in subjects with advanced unresectable,
recurrent or metastatic tumors.