Skip to main content

Lee E. Wheless, M.D., Ph.D.

  • Assistant Professor

Lee E. Wheless, M.D., Ph.D.

  • Assistant Professor

lee.e.wheless@vumc.org

Research Program

Research Description

Have any questions? Contact Us 1-877-936-8422 for more information
This clinical trial investigates factors associated with access to genetic risk assessment, counseling, and testings services. The trial also seeks to refine and evaluate the effectiveness of online tools on improving cancer risk management practices and family communication of genetic test results.

Richard, P. Garvin, PhD

  • Assistant Professor, Psychology

Richard, P. Garvin, PhD

  • Assistant Professor, Psychology

rgarvin@tnstate.edu

Research Program

Have any questions? Contact Us 1-877-936-8422 for more information
This phase II trial studies the effect of pembrolizumab alone compared to the usual approach (chemotherapy [cisplatin and carboplatin] plus radiation therapy) after surgery in treating patients with head and neck squamous cell carcinoma that has come back (recurrent) or patients with a second head and neck cancer that is not from metastasis (primary). Radiation therapy uses high energy radiation or protons to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. Carboplatin is also in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab alone after surgery may work better than the usual approach in shrinking recurrent or primary head and neck squamous cell carcinoma.
This phase III trial compares the effect of open thoracic surgery (thoracotomy) to thoracoscopic surgery (video-assisted thoracoscopic surgery or VATS) in treating patients with osteosarcoma that has spread to the lung (pulmonary metastases). Open thoracic surgery is a type of surgery done through a single larger incision (like a large cut) that goes between the ribs, opens up the chest, and removes the cancer. Thoracoscopy is a type of chest surgery where the doctor makes several small incisions and uses a small camera to help with removing the cancer. This trial is being done evaluate the two different surgery methods for patients with osteosarcoma that has spread to the lung to find out which is better.
The goal of this clinical study is to learn more about the long-term safety, effectiveness and prolonged action of Kite study drugs, axicabtagene ciloleucel, brexucabtagene autoleucel, KITE-222, KITE-363, KITE-439, KITE-585, and KITE-718, in participants of Kite-sponsored interventional studies.
This phase II/III trial compares the effect of immunotherapy with atezolizumab in combination with standard chemotherapy with a platinum drug (cisplatin or carboplatin) and etoposide versus standard therapy alone for the treatment of poorly differentiated extrapulmonary (originated outside the lung) neuroendocrine cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or that has spread from where it first started (primary site) to other places in the body (metastatic). The other aim of this trial is to compare using atezolizumab just at the beginning of treatment versus continuing it beyond the initial treatment. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cisplatin and carboplatin are in a class of medications known as platinum-containing compounds that work by killing, stopping or slowing the growth of cancer cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair, and it may kill cancer cells. Giving atezolizumab in combination with a platinum drug (cisplatin or carboplatin) and etoposide may work better in treating patients with poorly differentiated extrapulmonary neuroendocrine cancer compared to standard therapy with a platinum drug (cisplatin or carboplatin) and etoposide alone.
This is a Phase 1/2, open-label, non-randomized, 4-part Phase 1 trial to determine the safety profile and identify the maximum tolerated dose (MTD) and/or recommended Phase 2 dose (RP2D) of INBRX 106 administered as a single agent or in combination with the anti-PD-1 checkpoint inhibitor (CPI) pembrolizumab (Keytruda).

Yash Choksi, MD

  • Assistant Professor of Medicine (Gastroenterology, Hepatology, and Nutrition)

Yash Choksi, MD

  • Assistant Professor of Medicine (Gastroenterology, Hepatology, and Nutrition)

yash.a.choksi@vumc.org

Research Program

Have any questions? Contact Us 1-877-936-8422 for more information
This phase II trial investigates how well sacituzumab govitecan and atezolizumab work in preventing triple negative breast cancer from coming back (recurrence). Atezolizumab is a protein that affects the immune system by blocking the PD-L1 pathway. The PD-L1 pathway controls the bodys natural immune response, but for some types of cancer the immune system does not work as it should and is prevented from attacking tumors. Atezolizumab works by blocking the PD-L1 pathway, which may help the immune system identify and catch tumor cells. Sacituzumab govitecan is a monoclonal antibody, called sacituzumab, linked to a chemotherapy drug, called SN-38. Sacituzumab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as TROP2 receptors, and delivers SN-38 to kill them. Giving sacituzumab govitecan and atezolizumab may work as a treatment for residual cancer in the breast or lymph nodes.
Subscribe to