Skip to main content

Patient Search

KaCrole Higgins was diagnosed with breast cancer in 2020. “In May 2020, I found a lump in my breast. I cried. By June, it was diagnosed as breast cancer, triple positive, stage 1A. While getting this cancer diagnosis was devastating, it also became an opportunity. Suddenly, the cancer gave me clarity. It gave me clarity about what was important, what was good in my life, what was toxic in my life, and what I needed to do.” Click below to read more of KaCrole’s story

https://momentum.vicc.org/2022/04/cancer-gave-me-clarity/

If Landon Ryan had been diagnosed with bilateral retinoblastoma 10, 20 or 30 years ago, she might not be here today with nearly perfect vision.Thanks to recent improvements in the treatment for this rare form of cancer that almost exclusively affects children under the age of 5, the diagnosis had the power to change Landon’s life when she was 11 months old, but not to take it — or her eyesight. Click below to learn more about Landon and her story.

https://momentum.vicc.org/2022/04/brighter-outlook/
Displaying 51 - 60 of 198

Inotuzumab Ozogamicin in Treating Younger Patients With B-Lymphoblastic Lymphoma or Relapsed or Refractory CD22 Positive B Acute Lymphoblastic Leukemia

This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
Not Available
II
Not Available
NCT02981628
COGAALL1621

Study of ONO-4685 in Patients With Relapsed or Refractory T Cell Lymphoma

Lymphoma

This study will investigate the safety, tolerability, pharmacokinetics, and preliminary efficacy of ONO-4685 in patients with relapsed or refractory T cell Lymphoma
Lymphoma
I
Dholaria, Bhagirathbhai
NCT05079282
VICC-DTPCL24022P

Split Course Adaptive Radiation Therapy With Pembrolizumab With/Without Chemotherapy for Treating Stage IV Lung Cancer

Multiple Cancer Types

This phase I/II trial tests the safety and efficacy of split-course adaptive radiation therapy in combination with immunotherapy with or without chemotherapy for the treatment of patients with stage IV lung cancer or lung cancer that that has spread to nearby tissue or lymph nodes (locally advanced). Radiation therapy is a standard cancer treatment that uses high energy rays to kill cancer cells and shrink tumors. Split-course adaptive radiation therapy uses patient disease response to alter the intensity of the radiation therapy. Immunotherapy with monoclonal antibodies such as pembrolizumab, ipilimumab, cemiplimab, atezolizumab or nivolumab may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs like carboplatin, pemetrexed, and paclitaxel work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving split-course adaptive radiation therapy with standard treatments like immunotherapy and chemotherapy may be more effective at treating stage IV or locally advanced lung cancer than giving them alone.
Lung, Non Small Cell, Phase I
I/II
Osmundson, Evan
NCT05501665
VICCTHOP2185

Lenalidomide, and Dexamethasone With or Without Daratumumab in Treating Patients With High-Risk Smoldering Myeloma

Multiple Myeloma

This phase III trial studies how well lenalidomide and dexamethasone works with or without daratumumab in treating patients with high-risk smoldering myeloma. Drugs used in chemotherapy, such as lenalidomide and dexamethasone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as daratumumab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Giving lenalidomide and dexamethasone with daratumumab may work better in treating patients with smoldering myeloma.
Multiple Myeloma
III
Baljevic, Muhamed
NCT03937635
ECOGPCLEAA173

Testing the Use of AMG 510 (Sotorasib) and Panitumumab as a Targeted Treatment for KRAS G12C Mutant Solid Tumor Cancers (A ComboMATCH Treatment Trial)

This phase II ComboMATCH treatment trial tests how well AMG 510 (sotorasib) with or without panitumumab works in treating patients with KRAS G12C mutant solid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Sotorasib is in a class of medications called KRAS inhibitors. It works by blocking the action of the abnormal protein that signals cancer cells to multiply. This helps stop or slow the spread of cancer cells. Panitumumab is in a class of medications called monoclonal antibodies. It works by slowing or stopping the growth of cancer cells. Giving combination panitumumab and sotorasib may kill more tumor cells in patients with advanced solid tumors with KRAS G12C mutation.
Not Available
II
Choe, Jennifer
NCT05638295
ECOGMDEAY191-E5

Testing the Use of Combination Therapy in Adult Patients With Newly Diagnosed Multiple Myeloma, the EQUATE Trial

Multiple Myeloma

This phase III trial compares the combination of four drugs (daratumumab, bortezomib, lenalidomide and dexamethasone) to the use of a three drug combination (daratumumab, lenalidomide and dexamethasone). Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Daratumumab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Anti-inflammatory drugs, such as dexamethasone lower the body's immune response and are used with other drugs in the treatment of some types of cancer. Adding bortezomib to daratumumab, lenalidomide, and dexamethasone may be more effective in shrinking the cancer or preventing it from returning, compared to continuing on daratumumab, lenalidomide, and dexamethasone.
Multiple Myeloma
III
Baljevic, Muhamed
NCT04566328
ECOGPCLEAA181

Testing the Addition of the Anti-cancer Drug Venetoclax and/or the Anti-cancer Immunotherapy Blinatumomab to the Usual Chemotherapy Treatment for Infants With Newly Diagnosed KMT2A-rearranged or KMT2A-non-rearranged Leukemia

Leukemia

This phase II trial tests the addition of venetoclax and/or blinatumomab to usual chemotherapy for treating infants with newly diagnosed acute lymphoblastic leukemia (ALL) with a KMT2A gene rearrangement (KMT2A-rearranged \[R\]) or without a KMT2A gene rearrangement (KMT2A-germline \[G\]). Venetoclax is in a class of medications called B-cell lymphoma-2 (Bcl-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Blinatumomab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Chemotherapy drugs work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding venetoclax and/or blinatumomab to standard chemotherapy may be more effective at treating patients with ALL than standard chemotherapy alone, but it may also cause more side effects. This clinical trial evaluates the safety and effectiveness of adding venetoclax and/or blinatumomab to chemotherapy for the treatment of infants with KMT2A-R or KMT2A-G ALL.
Leukemia
II
Smith, Brianna
NCT06317662
COGAALL2321

Carmustine Wafer in Combination With Retifanlimab and Radiation With/Without Temozolomide in Subjects With Glioblastoma

Multiple Cancer Types

The purpose of the study is to evaluate the safety and survival of carmustine wafers and radiation and retifanlimab with or without temozolomide (TMZ) in newly-diagnosed adult subjects with glioblastoma multiform after carmustine wafer placement.
Neuro-Oncology, Phase I
I
Thompson, Reid
NCT05083754
VICCNEUP22119

A Trial to Evaluate the Safety and Activity of Fruquintinib in Minority Populations With Advanced, Previously Treated Colorectal Cancer

High blood pressure (hypertension) is a known side effect of the treatment with fruquintinib. Current research does not provide a clear answer whether minority groups such as Black/African American and/or Hispanic/Latino with refractory metastatic colorectal cancer (mCRC) have a bigger risk of higher blood pressure after treatment with fruquintinib. The main aim of this study is to learn how often adults of a minority group experience hypertension after they have been treated with fruquintinib for refractory mCRC. Other aims are to learn how safe fruquintinib is and how well it is tolerated by participants.

Participants will receive fruquintinib in 4-week treatment cycles until their condition worsens, they do no longer tolerate the treatment or stop the treatment for other reasons. After the last treatment, participants will be checked upon every 3 months until study completion.
Not Available
IV
Looney, Brooke
NCT06562543
VICC-DTGIT24074

P-BCMA-ALLO1 Allogeneic CAR-T Cells in the Treatment of Subjects With Multiple Myeloma

Multiple Cancer Types

Phase 1 study comprised of open-label, dose escalation, multiple cohorts of P-BCMA-ALLO1 allogeneic T stem cell memory (Tscm) CAR-T cells in subjects with relapsed / refractory Multiple Myeloma (RRMM).
Multiple Myeloma, Phase I
I
Dholaria, Bhagirathbhai
NCT04960579
VICCCTTP2232