Skip to main content

Patient Search

KaCrole Higgins was diagnosed with breast cancer in 2020. “In May 2020, I found a lump in my breast. I cried. By June, it was diagnosed as breast cancer, triple positive, stage 1A. While getting this cancer diagnosis was devastating, it also became an opportunity. Suddenly, the cancer gave me clarity. It gave me clarity about what was important, what was good in my life, what was toxic in my life, and what I needed to do.” Click below to read more of KaCrole’s story

https://momentum.vicc.org/2022/04/cancer-gave-me-clarity/

If Landon Ryan had been diagnosed with bilateral retinoblastoma 10, 20 or 30 years ago, she might not be here today with nearly perfect vision.Thanks to recent improvements in the treatment for this rare form of cancer that almost exclusively affects children under the age of 5, the diagnosis had the power to change Landon’s life when she was 11 months old, but not to take it — or her eyesight. Click below to learn more about Landon and her story.

https://momentum.vicc.org/2022/04/brighter-outlook/
Displaying 61 - 70 of 196

A Study of Elritercept to Treat Anemia in Adults With Very Low, Low, or Intermediate Risk Myelodysplastic Syndromes (MDS) Who Need Regular Blood Transfusions

Myelodysplastic Syndrome

The main aim of this study is to find out how well elritercept works in lowering the need for RBC transfusions. Other aims are to learn how well elritercept works in reducing the need for RBC transfusions over longer periods of time or in adults with high transfusion needs. The study will also check on how safe elritercept is and how well it is tolerated.
Myelodysplastic Syndrome
III
Kishtagari, Ashwin
NCT06499285
VICCHEM24599

Self-Management for Head and Neck Lymphedema and Fibrosis [PROMISE Trial]

Head/Neck

The goal of this study is to evaluate the effectiveness of a standardized lymphedema and fibrosis self-management program (LEF-SMP) to improve LEF self-management and reduce LEF-associated symptom burden, functional deficits, and improve quality of life in head and neck cancer (HNC) survivors.
Head/Neck
N/A
Murphy, Barbara
NCT06125743
VICC-EDHAN23569

Testing the Addition of a New Anti-cancer Drug, M3814 (Peposertib), to the Usual Radiotherapy in Patients With Locally Advanced Pancreatic Cancer

Pancreatic

This phase I/II trial studies the safety, side effects and best dose of M3814 and to see how well it works when given together with radiation therapy in treating patients with pancreatic cancer that has spread to nearby tissue or lymph nodes (locally advanced). M3814 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving M3814 and hypofractionated radiation therapy together may be safe, tolerable and/or more effective than radiation therapy alone in treating patients with locally advanced pancreatic cancer.
Pancreatic
I/II
Cardin, Dana
NCT04172532
NCIGIP10366

Surgery With or Without Neoadjuvant Chemotherapy in High Risk RetroPeritoneal Sarcoma

Sarcoma

This is a multicenter, randomized, open label phase lll trial to assess whether preoperative chemotherapy, as an adjunct to curative-intent surgery, improves the prognosis of high risk DDLPS (dedifferentiated Liposarcoma) and LMS (Leiomyosarcoma) patients as measured by disease free survival.

After confirmation of eligibility criteria, patients will be randomized to either the standard arm or experimental arm.
Sarcoma
III
Davis, Elizabeth
NCT04031677
ECOGSAREA7211

Phase II Panitumumab-IRDye800 in Head & Neck Cancer

Head/Neck

The purpose of this study is to determine if panitumumab-IRDye800 is effective in identifying cancer, compared to surrounding normal tissue, and the further characterize the safety profile of this drug.
Head/Neck
II
Rosenthal, Eben
NCT04511078
VICCHN21109

A Study of Tucatinib With Trastuzumab and mFOLFOX6 Versus Standard of Care Treatment in First-line HER2+ Metastatic Colorectal Cancer

This study is being done to find out if tucatinib with other cancer drugs works better than standard of care to treat participants with HER2 positive colorectal cancer. This study will also determine what side effects happen when participants take this combination of drugs. A side effect is anything a drug does to the body besides treating your disease.

Participants in this study have colorectal cancer that has spread through the body (metastatic) and/or cannot be removed with surgery (unresectable).

Participants will be assigned randomly to the tucatinib group or standard of care group. The tucatinib group will get tucatinib, trastuzumab, and mFOLFOX6. The standard of care group will get either:

* mFOLFOX6 alone,
* mFOLFOX6 with bevacizumab, or
* mFOLFOX6 with cetuximab mFOLFOX6 is a combination of multiple drugs. All of the drugs given in this study are used to treat this type of cancer.
Not Available
III
Not Available
NCT05253651
VICC-DTGIT23052

Avelumab or Hydroxychloroquine with or Without Palbociclib to Eliminate Dormant Breast Cancer

Breast

This clinical trial will assess the safety and early efficacy of Hydroxychloroquine or Avelumab, with or without Palbociclib, in early-stage ER+ breast cancer patients who are found to harbor disseminated tumor cells (DTCs) in the bone marrow after definitive surgery and standard adjuvant therapy.
Breast
II
Reid, Sonya
NCT04841148
VICCBRE2161

Radiotherapy to Block Oligoprogression In Metastatic Non-Small-Cell Lung Cancer

Lung

This study is being done to answer the following question: Can the chance of lung cancer growing or spreading be lowered by adding targeted radiotherapy to the usual combination of drugs?

This study is being done to find out if this approach is better or worse than the usual approach for lung cancer. The usual approach is defined as the care most people get for non-small cell lung cancer.
Lung
III
Osmundson, Evan
NCT06686771
NRGTHOCCTGBR38

Testing Nivolumab and Ipilimumab Immunotherapy With or Without the Targeted Drug Cabozantinib in Recurrent, Metastatic, or Incurable Nasopharyngeal Cancer

Head/Neck

This phase II trial tests how well nivolumab and ipilimumab immunotherapy with or without cabozantinib works in treating patients with nasopharyngeal cancer that has come back (after a period of improvement) (recurrent), has spread from where it first started (primary site) to other places in the body (metastatic), or for which no treatment is currently available (incurable). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving immunotherapy with nivolumab and ipilimumab and targeted therapy with cabozantinib may help shrink and stabilize nasopharyngeal cancer.
Head/Neck
II
Choe, Jennifer
NCT05904080
ALLHNA092105

A Study to Compare Standard Therapy to Treat Hodgkin Lymphoma to the Use of Two Drugs, Brentuximab Vedotin and Nivolumab

Multiple Cancer Types

This phase III trial compares the effect of adding immunotherapy (brentuximab vedotin and nivolumab) to standard treatment (chemotherapy with or without radiation) to the standard treatment alone in improving survival in patients with stage I and II classical Hodgkin lymphoma. Brentuximab vedotin is in a class of medications called antibody-drug conjugates. It is made of a monoclonal antibody called brentuximab that is linked to a cytotoxic agent called vedotin. Brentuximab attaches to CD30 positive lymphoma cells in a targeted way and delivers vedotin to kill them. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs such as doxorubicin hydrochloride, bleomycin sulfate, vinblastine sulfate, dacarbazine, and procarbazine hydrochloride work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Cyclophosphamide is in a class of medications called alkylating agents. It works by damaging the cell's deoxyribonucleic acid (DNA) and may kill cancer cells. It may also lower the body's immune response. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill cancer cells. Vincristine is in a class of medications called vinca alkaloids. It works by stopping cancer cells from growing and dividing and may kill them. Prednisone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Adding immunotherapy to the standard treatment of chemotherapy with or without radiation may increase survival and/or fewer short-term or long-term side effects in patients with classical Hodgkin lymphoma compared to the standard treatment alone.
Pediatric Lymphoma, Pediatrics
III
Smith, Christine
NCT05675410
VICC-NTPED23306