Gene Signatures to Guide HR+MBC Therapy in a Diverse Cohort
Breast
Breast
This is an open-label, multicenter, two-arm Phase II clinical trial that will evaluate the impact of 2nd line chemotherapy (i.e. capecitabine) on survival in patients with non-Luminal A hormone receptor-positive (HR+) metastatic breast cancer (MBC)
Breast
II
Reid, Sonya
NCT05693766
VICCBRE2256
Testing Shorter Duration Radiation Therapy Versus the Usual Radiation Therapy in Patients Receiving the Usual Chemotherapy Treatment for Bladder Cancer, ARCHER Study
Bladder
Bladder
This phase III trial compares the effect of decreased number of radiation (ultra-hypofractionated) treatments to the usual radiation number of treatments (hypofractionation) with standard of care chemotherapy, with cisplatin, gemcitabine or mitomycin and 5-fluorouracil for the treatment of patients with muscle invasive bladder cancer. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a short period of time. Ultra-hypofractionated radiation therapy delivers radiation over an even shorter period of time than hypofractionated radiation therapy. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of tumor cells. Gemcitabine is a chemotherapy drug that blocks the cells from making DNA and may kill tumor cells. Chemotherapy drugs, such as mitomycin-C and 5-fluorouracil (5-FU), work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ultra-hypofractionated radiation may be equally effective as hypofractionated therapy for patients with muscle invasive bladder cancer.
Bladder
III
Kirschner, Austin
NCT07097142
NRGUROGU015
Cryodevitalization for the Treatment of Early Stage Lung Cancer, CRYSTAL Trial
Lung
Lung
This clinical trial studies side effects and best treatment time of cryodevitalization in treating patients with early stage (stage I or stage II) lung cancer. Cryodevitalization is a type of cryosurgery that uses a flexible probe (cryoprobe) to kill tumor cells by freezing them. It is delivered at the time of standard diagnostic robotic bronchoscopy. Using cryodevitalization may be safe, tolerable and/or effective in treating patients with early stage lung cancer.
Lung
N/A
Maldonado, Fabien
NCT06593106
VICC-VCTHO24099
A Study to Compare Standard Chemotherapy to Therapy With CPX-351 and/or Gilteritinib for Patients With Newly Diagnosed AML With or Without FLT3 Mutations
This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
Not Available
III
Not Available
NCT04293562
COGAAML1831
Open-label of Loncastuximab Tesirine (ADCT-402) in Relapsed/Refractory Marginal Zone Lymphoma
Lymphoma
Lymphoma
The purpose of this research study is to see if loncastuximab tesirine has any benefits at dose levels researchers found acceptable in earlier studies in patients with related forms of immune cell cancers. The researchers want to find out the effects (good and bad) that loncastuximab tesirine has on the participant and the participant's condition.
Lymphoma
II
Oluwole, Olalekan
NCT05296070
VICC-ITCTT23024
Testing the Use of Combination Therapy in Adult Patients With Newly Diagnosed Multiple Myeloma, the EQUATE Trial
Multiple Myeloma
Multiple Myeloma
This phase III trial compares the combination of four drugs (daratumumab, bortezomib, lenalidomide and dexamethasone) to the use of a three drug combination (daratumumab, lenalidomide and dexamethasone). Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Daratumumab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Anti-inflammatory drugs, such as dexamethasone lower the body's immune response and are used with other drugs in the treatment of some types of cancer. Adding bortezomib to daratumumab, lenalidomide, and dexamethasone may be more effective in shrinking the cancer or preventing it from returning, compared to continuing on daratumumab, lenalidomide, and dexamethasone.
Multiple Myeloma
III
Baljevic, Muhamed
NCT04566328
ECOGPCLEAA181
A Study to Evaluate INCA033989 Administered as a Monotherapy or in Combination With Ruxolitinib in Participants With Myeloproliferative Neoplasms
Leukemia
Leukemia
This study is being conducted to evaluate the safety, tolerability, dose-limiting toxicity (DLT) and determine the maximum tolerated dose (MTD) and/or recommended dose(s) for expansion (RDE) of INCA033989 administered as a Monotherapy or in Combination With Ruxolitinib in participants with myeloproliferative neoplasms.
Leukemia
I
Mohan, Sanjay
NCT06034002
VICC-DTHEM23416P
A Study to Evaluate the Safety, Tolerability of INCB160058 in Participants With Myeloproliferative Neoplasms
This study is being conducted to assess the Safety, Tolerability, and Pharmacokinetics of INCB160058 in Participants With Myeloproliferative Neoplasms.
Not Available
I
Kishtagari, Ashwin
NCT06313593
VICC-DTHEM24055P
Testing Olaparib for One or Two Years, With or Without Bevacizumab, to Treat Ovarian Cancer
Multiple Cancer Types
This phase III trial compares the effect of olaparib for one year versus two years, with or without bevacizumab, for the treatment of BRCA 1/2 mutated or homologous recombination deficient stage III or IV ovarian cancer. Olaparib is a polyadenosine 5'-diphosphoribose polymerase (PARP) enzyme inhibitor and may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Bevacizumab is in a class of medications called antiangiogenic agents. It works by stopping the formation of blood vessels that bring oxygen and nutrients to tumor. This may slow the growth and spread of tumor. Giving olaparib for one year with or without bevacizumab may be effective in treating patients with BRCA 1/2 mutated or homologous recombination deficient stage III or IV ovarian cancer, when compared to two years of olaparib.
Gynecologic,
Ovarian
III
Brown, Alaina
NCT06580314
NRGGYNGY036
Expanded Access Program (EAP) for Ciltacabtagene Autoleucel (Cilta-Cel) Out-of-Specification (OOS) in Participants With Multiple Myeloma
Multiple Myeloma
Multiple Myeloma
The purpose of this expanded access program (EAP) is to provide ciltacabtagene autoleucel (cilta-cel) that does not meet the commercial release specifications of CARVYKTI and is not available via the local health care system in the country where the treatment is requested.
Multiple Myeloma
N/A
Oluwole, Olalekan
NCT05346835
VICC-XDCTT24033