Skip to main content

Displaying 71 - 80 of 196

Split Course Adaptive Radiation Therapy With Pembrolizumab With/Without Chemotherapy for Treating Stage IV Lung Cancer

Multiple Cancer Types

This phase I/II trial tests the safety and efficacy of split-course adaptive radiation therapy in combination with immunotherapy with or without chemotherapy for the treatment of patients with stage IV lung cancer or lung cancer that that has spread to nearby tissue or lymph nodes (locally advanced). Radiation therapy is a standard cancer treatment that uses high energy rays to kill cancer cells and shrink tumors. Split-course adaptive radiation therapy uses patient disease response to alter the intensity of the radiation therapy. Immunotherapy with monoclonal antibodies such as pembrolizumab, ipilimumab, cemiplimab, atezolizumab or nivolumab may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs like carboplatin, pemetrexed, and paclitaxel work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving split-course adaptive radiation therapy with standard treatments like immunotherapy and chemotherapy may be more effective at treating stage IV or locally advanced lung cancer than giving them alone.
Lung, Non Small Cell, Phase I
I/II
Osmundson, Evan
NCT05501665
VICCTHOP2185

Lenalidomide, and Dexamethasone With or Without Daratumumab in Treating Patients With High-Risk Smoldering Myeloma

Multiple Myeloma

This phase III trial studies how well lenalidomide and dexamethasone works with or without daratumumab in treating patients with high-risk smoldering myeloma. Drugs used in chemotherapy, such as lenalidomide and dexamethasone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as daratumumab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Giving lenalidomide and dexamethasone with daratumumab may work better in treating patients with smoldering myeloma.
Multiple Myeloma
III
Baljevic, Muhamed
NCT03937635
ECOGPCLEAA173

Atezolizumab + Sacituzumab Govitecan to Prevent Recurrence in TNBC (ASPRIA)

Breast

The purpose of this study is to determine if a combination of two drugs sacituzumab govitecan and atezolizumab works as a treatment for residual cancer in the breast or lymph nodes and have circulating tumor DNA in the blood.

This research study involves the following investigational drugs:

* Sacituzumab govitecan
* Atezolizumab
Breast
II
Abramson, Vandana
NCT04434040
VICCBRE2056

A Study to Assess Adverse Events of Intravenously (IV) Infused ABBV-383 in Adult Participants With Relapsed or Refractory Multiple Myeloma

Multiple Myeloma (MM) is a cancer of the blood's plasma cells ( blood cell). The cancer is typically found in the bones and bone marrow (the spongy tissue inside of the bones) and can cause bone pain, fractures, infections, weaker bones, and kidney failure. Treatments are available, but MM can come back (relapsed) or may not get better (refractory) with treatment. This is a study to determine adverse events and change in disease symptoms of ABBV-383 in adult participants with relapsed/refractory (R/R) MM.

ABBV-383 is an investigational drug being developed for the treatment of R/R Multiple Myeloma (MM). This study is broken into 3 Arms; Arm A (Parts 1 and 2), Arm B and Arm C. Arm A includes 2 parts: step-up dose optimization (Part 1) and dose expansion (Part 2). In Part 1, different level of step-up doses are tested followed by the target dose of ABBV-383. In Part 2, the step-up dose identified in Part 1 (Dose A) will be used followed by the target dose A of ABBV-383. In Arm B a flat dose of ABBV-383 will be tested. "In Arm C, the step-up dose identified in Arm A will be used followed by the target dose of ABBV-383 to investigate outpatient administration of ABBV-383. Around 180 adult participants with relapsed/refractory multiple myeloma will be enrolled at approximately 40 sites across the world.

Participants will receive ABBV-383 as an infusion into the vein in 28 day cycles for approximately 3 years.

There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic. The effect of the treatment will be checked by medical assessments, blood tests, checking for side effects and questionnaires.
Not Available
I
Not Available
NCT05650632
VICC-DTPCL23010P

A Study to Compare Standard Chemotherapy to Therapy With CPX-351 and/or Gilteritinib for Patients With Newly Diagnosed AML With or Without FLT3 Mutations

This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
Not Available
III
Not Available
NCT04293562
COGAAML1831

A Study of CBX-250 in Participants With Acute Myeloid Leukemia, High-Risk Myelodysplastic Syndrome or Chronic Myelomonocytic Leukemia

Multiple Cancer Types

Study CBX-250-001 is a Phase 1, open-label, dose-escalation study of CBX-250 in participants with relapsed/refractory AML, HR-MDS and CMML. Participants aged 12 years are planned to be enrolled. CBX-250 will initially be investigated on a fixed step-up dosing schedule. CBX-250 will be administered subcutaneously in 28-day cycles, with the first study drug dose administered on Cycle 1, Day 1. Cycle 1 will consist of a priming phase over 7 days, and a target phase over 28 days. Participants will continue CBX-250 until progressive disease (PD) or unacceptable toxicity. All subsequent treatment cycles will be 28 days.
Leukemia, Myelodysplastic Syndrome
I
Ball, Somedeb
NCT06994676
VICCHEMP25017

Surgical Debulking Prior to Peptide Receptor Radionuclide Therapy in Well Differentiated Gastroenteropancreatic Neuroendocrine Tumors

Multiple Cancer Types

This phase IV trial evaluates how well giving standard of care (SOC) peptide receptor radionuclide therapy (PRRT) after SOC surgical removal of as much tumor as possible (debulking surgery) works in treating patients with grade 1 or 2, somatostatin receptor (SSTR) positive, gastroenteropancreatic neuroendocrine tumors (GEP-NETs) that have spread from where they first started (primary site) to the liver (hepatic metastasis). Lutetium Lu 177 dotatate is a radioactive drug that uses targeted radiation to kill tumor cells. Lutetium Lu 177 dotatate includes a radioactive form (an isotope) of the element called lutetium. This radioactive isotope (Lu-177) is attached to a molecule called dotatate. On the surface of GEP-NET tumor cells, a receptor called a somatostatin receptor binds to dotatate. When this binding occurs, the lutetium Lu 177 dotatate drug then enters somatostatin receptor-positive tumor cells, and radiation emitted by Lu-177 helps kill the cells. Giving lutetium Lu 177 dotatate after surgical debulking may better treat patients with grade 1/2 GEP-NETs
Colon, Esophageal, Gastric/Gastroesophageal, Gastrointestinal, Liver, Pancreatic, Rectal
N/A
Idrees, Kamran
NCT06016855
VICCGI2283

Prophylactic Reinforcement of Ventral Abdominal Incisions Trial

Miscellaneous

This trial is being conducted to evaluate the efficacy of Phasix Mesh implantation at the time of midline fascial closure compared to primary suture closure in preventing a subsequent incisional hernia in subjects at risk for incisional hernia after open midline laparotomy surgery.
Miscellaneous
IV
Pierce, Richard
NCT03911700
VICCGI2281

International Penile Advanced Cancer Trial (International Rare Cancers Initiative Study)

Miscellaneous

This is an international phase III trial, with a Bayesian design, incorporating two sequential randomisations. It efficiently examines a series of questions that routinely arise in the sequencing of treatment. The study design has evolved from lengthy international consultation that has enabled us to build consensus over which questions arise from current knowledge and practice. It will enable potential randomisation for the majority of patients with inguinal lymph node metastases and will provide data to inform future clinical decisions.

InPACT-neoadjuvant patients are stratified by disease burden as assessed by radiological criteria. Treatment options are then defined according to the disease burden strata. Treatment is allocated by randomisation. Patients may be allocated to one of three initial treatments:

A. standard surgery (ILND); B. neoadjuvant chemotherapy followed by standard surgery (ILND); or C. neoadjuvant chemoradiotherapy followed by standard surgery (ILND).

After ILND, patients are defined as being at low or high risk of recurrence based on histological interpretation of the ILND specimen. Patients at high risk of relapse are eligible for InPACT-pelvis, where they are randomised to either:

P. prophylactic PLND Q. no prophylactic PLND
Miscellaneous
III
Rini, Brian
NCT02305654
ECOGUROEA8134

Expanded Access Protocol Using 131I-MIBG

Multiple Cancer Types

Protocol JDI2007-01 is an Expanded Access Protocol with therapeutic 131I-MIBG for patients with neuroblastoma or pheochromocytoma / paraganglioma, who otherwise do not qualify for available treatments, or where approved treatment is not commercially available.
Neuroblastoma (Pediatrics), Pediatric Solid Tumors
N/A
Kitko, Carrie
NCT01590680
VICCPED1249