Testing the Effectiveness of Two Immunotherapy Drugs (Nivolumab and Ipilimumab) With One Anti-cancer Targeted Drug (Cabozantinib) for Rare Genitourinary Tumors
Multiple Cancer Types
This phase II trial studies how well cabozantinib works in combination with nivolumab and ipilimumab in treating patients with rare genitourinary (GU) tumors that has spread from where it first started (primary site) to other places in the body. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib, nivolumab, and ipilimumab may work better in treating patients with genitourinary tumors that have no treatment options compared to giving cabozantinib, nivolumab, or ipilimumab alone.
Bladder,
Kidney (Renal Cell),
Rectal
II
Schaffer, Kerry
NCT03866382
ALLIANCEUROA031702
Study of Targeted Therapy vs. Chemotherapy in Patients With Thyroid Cancer
Thyroid
Thyroid
This phase III trial compares the effect of cabozantinib versus combination dabrafenib and trametinib for the treatment of patients with differentiated thyroid cancer that does not respond to treatment (refractory) and which expresses a BRAF V600E mutation. Cabozantinib is in a class of medications called receptor tyrosine kinase inhibitors. It binds to and blocks the action of several enzymes which are often over-expressed in a variety of tumor cell types. This may help stop or slow the growth of tumor cells and blood vessels the tumor needs to survive. Dabrafenib is an enzyme inhibitor that binds to and inhibits the activity of a protein called B-raf, which may inhibit the proliferation of tumor cells which contain a mutated BRAF gene. Trametinib is also an enzyme inhibitor. It binds to and inhibits the activity of proteins called MEK 1 and 2, which play a key role in activating pathways that regulate cell growth. This may inhibit the growth of tumor cells mediated by these pathways. The usual approach for patients with thyroid cancer is targeted therapy with dabrafenib and trametinib. This trial may help researchers decide which treatment option (cabozantinib alone or dabrafenib in combination with trametinib) is safer and/or more effective in treating patients with refractory BRAF V600E-mutated differentiated thyroid cancer.
Thyroid
III
Choe, Jennifer
NCT06475989
ECOGHNEA3231
Split Course Adaptive Radiation Therapy With Pembrolizumab With/Without Chemotherapy for Treating Stage IV Lung Cancer
Multiple Cancer Types
This phase I/II trial tests the safety and efficacy of split-course adaptive radiation therapy in combination with immunotherapy with or without chemotherapy for the treatment of patients with stage IV lung cancer or lung cancer that that has spread to nearby tissue or lymph nodes (locally advanced). Radiation therapy is a standard cancer treatment that uses high energy rays to kill cancer cells and shrink tumors. Split-course adaptive radiation therapy uses patient disease response to alter the intensity of the radiation therapy. Immunotherapy with monoclonal antibodies such as pembrolizumab, ipilimumab, cemiplimab, atezolizumab or nivolumab may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs like carboplatin, pemetrexed, and paclitaxel work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving split-course adaptive radiation therapy with standard treatments like immunotherapy and chemotherapy may be more effective at treating stage IV or locally advanced lung cancer than giving them alone.
Lung,
Non Small Cell,
Phase I
I/II
Osmundson, Evan
NCT05501665
VICCTHOP2185
Image-Based, In-Vivo Assessment of Tumor Hypoxia to Guide Hypoxia-Driven Adaptive Radiation Therapy
Miscellaneous
Miscellaneous
This study will apply novel MRI approaches with established sensitivity to tissue oxygen consumption and perfusion to predict hypoxia-associated radiation resistance, manifested as tumor recurrence and progression post-treatment.
Miscellaneous
Early I
Osmundson, Evan
NCT05996432
VICC-EDMDT23195
Open-label of Loncastuximab Tesirine (ADCT-402) in Relapsed/Refractory Marginal Zone Lymphoma
Lymphoma
Lymphoma
The purpose of this research study is to see if loncastuximab tesirine has any benefits at dose levels researchers found acceptable in earlier studies in patients with related forms of immune cell cancers. The researchers want to find out the effects (good and bad) that loncastuximab tesirine has on the participant and the participant's condition.
Lymphoma
II
Oluwole, Olalekan
NCT05296070
VICC-ITCTT23024
Adding Nivolumab to Usual Treatment for People With Advanced Stomach or Esophageal Cancer, PARAMUNE Trial
This phase II/III trial compares the addition of nivolumab to the usual treatment of paclitaxel and ramucirumab to paclitaxel and ramucirumab alone in treating patients with gastric or esophageal adenocarcinoma that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Ramucirumab is a monoclonal antibody that may prevent the growth of new blood vessels that tumors need to grow. Paclitaxel is in a class of medications called antimicrotubule agents. It stops cancer cells from growing and dividing and may kill them. Adding nivolumab to ramucirumab and paclitaxel may work better to treat patients with advanced stomach or esophageal cancer.
Not Available
II/III
Agarwal, Rajiv
NCT06203600
SWOGGIS2303
Evaluation of Co-formulated Pembrolizumab/Quavonlimab (MK-1308A) Versus Other Treatments in Participants With Microsatellite Instability-High (MSI-H) or Mismatch Repair Deficient (dMMR) Stage IV Colorectal Cancer (CRC) (MK-1308A-008/KEYSTEP-008)
The purpose of this study is to assess the efficacy and safety of co-formulated pembrolizumab/quavonlimab versus other treatments in participants with MSI-H or dMMR Metastatic Stage IV Colorectal Cancer.
Not Available
II
Not Available
NCT04895722
VICCGI2145
Safety and Tolerability of Ziftomenib Combinations in Patients With Relapsed/Refractory Acute Myeloid Leukemia
The safety, tolerability, and antileukemic response of ziftomenib in combination with standard of care treatments for patients with relapsed/refractory acute myeloid leukemia will be examined with the following agents: FLAG-IDA, low-dose cytarabine, and gilteritinib.
Not Available
I
Fedorov, Kateryna
NCT06001788
VICC-DTHEM23484P
A Study of Bleximenib, Venetoclax and Azacitidine For Treatment of Participants With Newly Diagnosed Acute Myeloid Leukemia (AML)
Leukemia
Leukemia
The purpose of this study is to assess how bleximenib and Venetoclax (VEN)+ Azacitidine (AZA) works as compared to placebo and VEN+AZA alone for the treatment of participants with newly diagnosed Acute Myeloid Leukemia (AML) with a mutation in the NPM1 or KMT2A gene.
Leukemia
III
Fedorov, Kateryna
NCT06852222
VICCHEM25012
De-Escalation of Breast Radiation Trial for Hormone Sensitive, HER-2 Negative, Oncotype Recurrence Score Less Than or Equal to 18 Breast Cancer (DEBRA)
Breast
Breast
This Phase III Trial evaluates whether breast conservation surgery and endocrine therapy results in a non-inferior rate of invasive or non-invasive ipsilateral breast tumor recurrence (IBTR) compared to breast conservation with breast radiation and endocrine therapy.
Breast
III
Chak, Bapsi
NCT04852887
NRGBREBR007