Skip to main content

Displaying 71 - 80 of 166

Inotuzumab Ozogamicin in Treating Younger Patients with B-Lymphoblastic Lymphoma or Relapsed or Refractory CD22 Positive B Acute Lymphoblastic Leukemia

This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
Not Available
II
Not Available
NCT02981628
COGAALL1621

Neoadjuvant Neratinib for the Treatment of Stage I-III HER2-Mutated Lobular Breast Cancers

This phase II trial tests how well neratinib prior to the primary treatment (neoadjuvant) works in treating patients with stage I-III HER2 mutated lobular breast cancers. Neratinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving neratinib in addition to normal therapy may work better in treating cancer than the endocrine therapy patients would normally receive.
Not Available
II
Not Available
NCT05919108
VICC-NCBRE23172

Testing the Addition of the AKT Inhibitor, Ipatasertib, to Treatment with the Hormonal Agent Megestrol Acetate for Recurrent or Metastatic Endometrial Cancers

This phase Ib/II trial tests the safety, side effects, best dose, and effectiveness of the combination of ipatasertib with megestrol acetate to megestrol acetate alone in patients with endometrial cancer that has come back (recurrent) or has spread to other places in the body (metastatic). Ipatasertib may stop the growth of tumor cells and may kill them by blocking some of the enzymes needed for cell growth. Megestrol acetate lowers the amount of estrogen and also blocks the use of estrogen made by the body. This may help stop the growth of tumor cells that need estrogen to grow. The combination of ipatasertib and megestrol acetate may be more effective in treating endometrial cancer than megestrol acetate alone.
Not Available
I/II
Crispens, Marta
NCT05538897
NRGGYNGY028

Testing the Addition of a New Anti-cancer Drug, M3814 (Peposertib), to Radiation Therapy for Localized Pancreatic Cancer

This phase I/II trial studies the side effects and best dose of M3814 and to see how well it works when given together with radiation therapy in treating patients with pancreatic cancer that cannot be removed by surgery and has not spread to other parts of the body (localized). M3814 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving M3814 and hypofractionated radiation therapy together may work better than radiation therapy alone in the treatment of patients with localized pancreatic cancer.
Not Available
I/II
Cardin, Dana
NCT04172532
NCIGIP10366

Vincristine Pharmacokinetics in Infants

Pediatrics

This pilot trial compares drug exposure levels using a new method for dosing vincristine in infants and young children compared to the standard dosing method based on body surface area (BSA) in older children. Vincristine is an anticancer drug used to a variety of childhood cancers. The doses anticancer drugs in children must be adjusted based on the size of the child because children vary significantly in size (height, weight, and BSA) and ability to metabolize drugs from infancy to adolescence. The dose of most anticancer drugs is adjusted to BSA, which is calculated from a patients weight and height. However, infants and young children have more severe side effects if the BSA is used to calculate their dose, so new dosing models have to be made to safely give anticancer drugs to the youngest patients. This new method uses a BSA-banded approach to determine the dose. Collecting blood samples before and after a dose of the drug will help researchers determine whether this new vincristine dosing method results in equivalent drug levels in the blood over time in infants and young children compared to older children.
Pediatrics
N/A
Borinstein, Scott
NCT05359237
COGPEPN22P1

An Imaging Agent (89Zr Panitumumab) with PET/CT for Diagnosing Primary Lesions and/or Metastases in Patients with Head and Neck Squamous Cell Carcinoma

Head/Neck

This phase I trial evaluates the usefulness of an imaging agent (zirconium Zr 89 panitumumab [89Zr panitumumab]) with positron emission tomography (PET)/computed tomography (CT) for diagnosing primary tumors and/or the spread of disease from where it first started (primary site) to other places in the body (metastasis) in patients with head and neck squamous cell carcinoma. 89Zr panitumumab is an investigational imaging agent that contains a small amount of radiation, which makes it visible on PET scans. PET is an established imaging technique that utilizes small amounts of radioactivity attached to very minimal amounts of tracer, in the case of this research, 89Zr panitumumab, to allow imaging of the function of different cells and organs in the body. CT utilizes x-rays that traverse the body from the outside. CT images provide an exact outline of organs and potential disease tissue where it occurs in patients body. The combined PET/CT scanner is a special type of scanner that allows imaging of both structure (CT) and function (PET) following the injection of 89Zr panitumumab. This 89Zr panitumumab PET/CT may be useful in diagnosis of primary tumors and/or metastasis in patients with head and neck squamous cell carcinoma.
Head/Neck
I
Topf, Michael
NCT05747625
VICCHN2279

Evaluation of EBUS-TBNA versus EBUS-TBNA plus Transbronchial Mediastinal Cryobiopsy to Obtain Adequate Tissue Samples for Next Generation Sequencing, META-Gen Trial

This phase III trial compares how well endobronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA) versus EBUS-TBNA plus transbronchial mediastinal cryobiopsy works to obtain adequate tissue samples for next generation sequencing (NGS). During usual care, if there is suspicion of cancer, a procedures known as an EBUS-TBNA is done to take sample of lymph nodes to evaluate for cancer spread. If there is suspected cancer in the lymph nodes, multiple samples are taken for molecular testing (NGS) to help guide treatment decisions. It requires a certain amount of tissue to send for the molecular testing which can be achieved with EBUS-TBNA about 70% of the time. Researchers want to find out if adding a biopsy tool currently used in usual care, known as a cryoprobe, can acquire more tissue for molecular analysis. The cryoprobe uses a freezing technique to biopsy and can potentially gather larger and higher quality tissue samples than the standard EBUS-TBNA method.
Not Available
III
Maldonado, Fabien
NCT06105801
VICC-VDTHO23177

Intraoperative Identification and Stimulation of the Glossopharyngeal Nerve

Head/Neck

This clinical trial evaluates different nerve patterns to the throat muscles (stylopharyngeus and pharyngeal constrictor) and what they look like in different patients by measuring and photographing them in the neck during surgery when the nerves are dissected (separated into pieces) as part of regular surgical care. Researchers think that some of the muscles in the neck might be useful for treating a condition called obstructive sleep apnea (OSA). This happens when muscles of the throat relax at night and the airway becomes blocked. Blockage of airflow leads to drops in oxygen levels and can disturb sleep by forcing a persons brain to wake to restore airway muscles so they can breathe. This trial may help researchers provide a new way to treat OSA that may be better than the current standard ones.
Head/Neck
N/A
Ceremsak, John
NCT05754216
VICC-EDHAN23196

MRI and 18F-Fluoromisonidazole PET/CT Scan for Assessing Tumor Hypoxia and Guiding Adaptive Radiation Therapy in Patients With Head and Neck Cancer or Brain Metastases

Miscellaneous

This clinical trial is studying how well magnetic resonance imaging (MRI) in combination with 18F-fluoromisonidazole (18F-FMISO) positron emission tomography (PET)/computed tomography (CT) scans works in assessing a decrease in the amount of oxygen (hypoxia) in tumor cells and in guiding adaptive radiation treatment in patients with head and neck cancer or cancer that has spread to the brain from where it first started (brain metastasis). Both head and neck cancer and brain metastases can be treated with radiation. Previous research studies have shown that the amount of oxygen that goes towards cancer cells prior to their radiation treatments predicts how the cancer cells will respond to radiation treatment. MRI is a type of imaging technique that uses radio waves and large magnets to produce detailed images of areas inside the body. 18F-FMISO is a radioactive substance that binds to hypoxic tumor cells and emits radiation, allowing the tumor cells to be visualized using PET/CT, which is an imaging technique that combines PET and CT in a single machine. It is used to make detailed, computerized images of inside the body. By combining MRI with 18F-FMISO PET/CT, researchers may be able to develop an MRI sequence that can be used to evaluate hypoxia in tumor cells and predict response to treatment in patients with head and neck cancer or brain metastases.
Miscellaneous
Early I
Osmundson, Evan
NCT05996432
VICC-EDMDT23195

Enhanced Recovery After Surgery for Pain Management in Patients with Extremity Soft Tissue Sarcoma

Sarcoma

This clinical trial studies the effect of the ERAS pain management method in managing pain after surgery in patients with extremity soft tissue sarcoma. Enhanced Recovery After Surgery, or ERAS, is a pain management method that places emphasis on managing risk factors (things like smoking, nutrition and fitness), using multiple types of pain control, and early movement, with the goal of improving patient outcomes. ERAS has been shown to reduce the length of time some patients stay in the hospital, reduce complications from surgery, and even lower costs of some surgeries. ERAS is designed may help cut down on the use of these narcotics in managing the pain of surgery patients. The purpose of this trial is to demonstrate that ERAS is safe and effective for patients having surgery to treat their sarcoma. Specifically, this study will look at using a non-narcotic pain management program that includes other methods of managing the pain of sarcoma surgery patients.
Sarcoma
N/A
Lawrenz, Joshua
NCT04461171
VICCSAR2020