A Study to Evaluate INCA033989 Administered as a Monotherapy or in Combination With Ruxolitinib in Participants With Myeloproliferative Neoplasms
Leukemia
Leukemia
This study is being conducted to evaluate the safety, tolerability, dose-limiting toxicity (DLT) and determine the maximum tolerated dose (MTD) and/or recommended dose(s) for expansion (RDE) of INCA033989 administered as a Monotherapy or in Combination With Ruxolitinib in participants with myeloproliferative neoplasms.
Leukemia
I
Mohan, Sanjay
NCT06034002
VICC-DTHEM23416P
Genetic Testing to Select Therapy for the Treatment of Advanced or Metastatic Kidney Cancer, OPTIC RCC Study
Kidney (Renal Cell)
Kidney (Renal Cell)
This phase II trial tests whether using genetic testing of tumor tissue to select the optimal treatment regimen works in treating patients with clear cell renal cell (kidney) cancer that has spread to other places in the body (advanced or metastatic). The current Food and Drug Administration (FDA)-approved regimens for advanced kidney cancer fall into two categories. One treatment combination includes two immunotherapy drugs (nivolumab plus ipilimumab), which are delivered by separate intravenous infusions into a vein. The other combination is one immunotherapy drug (nivolumab infusion) plus an oral pill taken by mouth (cabozantinib). Nivolumab and ipilimumab are "immunotherapies" which release the brakes of the immune system, thus allowing the patient's own immune system to better kill cancer cells. Cabozantinib is a "targeted therapy" specifically designed to block certain biological mechanisms needed for growth of cancer cells. In kidney cancer, cabozantinib blocks a tumor's blood supply. The genetic (DNA) makeup of the tumor may affect how well it responds to therapy. Testing the makeup (genes) of the tumor, may help match a treatment (from one of the above two treatment options) to the specific cancer and increase the chance that the disease will respond to treatment. The purpose of this study is to learn if genetic testing of tumor tissue may help doctors select the optimal treatment regimen to which advanced kidney cancer is more likely to respond.
Kidney (Renal Cell)
II
Rini, Brian
NCT05361720
VICCURO21103
Testing Lutetium Lu 177 Dotatate in Patients With Somatostatin Receptor Positive Advanced Bronchial Neuroendocrine Tumors
Lung
Lung
This phase II trial studies the effect of lutetium Lu 177 dotatate compared to the usual treatment (everolimus) in treating patients with somatostatin receptor positive bronchial neuroendocrine tumors that have spread to other places in the body (advanced). Lutetium Lu 177-dotate is a radioactive drug. It binds to a protein called somatostatin receptor, which is found on some neuroendocrine tumor cells. Lutetium Lu 177-dotatate builds up in these cells and gives off radiation that may kill them. It is a type of radioconjugate and a type of somatostatin analog. Lutetium Lu 177 dotatate may be more effective than everolimus in shrinking or stabilizing advanced bronchial neuroendocrine tumors.
Lung
II
Ramirez, Robert
NCT04665739
SWOGTHOA021901
A Study of a New Way to Treat Children and Young Adults With a Brain Tumor Called NGGCT
Multiple Cancer Types
This phase II trial studies the best approach to combine chemotherapy and radiation therapy (RT) based on the patient's response to induction chemotherapy in patients with non-germinomatous germ cell tumors (NGGCT) that have not spread to other parts of the brain or body (localized). This study has 2 goals: 1) optimizing radiation for patients who respond well to induction chemotherapy to diminish spinal cord relapses, 2) utilizing higher dose chemotherapy followed by conventional RT in patients who did not respond to induction chemotherapy. Chemotherapy drugs, such as carboplatin, etoposide, ifosfamide, and thiotepa, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays or high-energy protons to kill tumor cells and shrink tumors. Studies have shown that patients with newly-diagnosed localized NGGCT, whose disease responds well to chemotherapy before receiving radiation therapy, are more likely to be free of the disease for a longer time than are patients for whom the chemotherapy does not efficiently eliminate or reduce the size of the tumor. The purpose of this study is to see how well the tumors respond to induction chemotherapy to decide what treatment to give next. Some patients will be given RT to the spine and a portion of the brain. Others will be given high dose chemotherapy and a stem cell transplant before RT to the whole brain and spine. Giving treatment based on the response to induction chemotherapy may lower the side effects of radiation in some patients and adjust the therapy to a more efficient one for other patients with localized NGGCT.
Germ Cell (Pediatrics),
Pediatrics
II
Esbenshade, Adam
NCT04684368
COGACNS2021
Split Course Adaptive Radiation Therapy With Pembrolizumab With/Without Chemotherapy for Treating Stage IV Lung Cancer
Multiple Cancer Types
This phase I/II trial tests the safety and efficacy of split-course adaptive radiation therapy in combination with immunotherapy with or without chemotherapy for the treatment of patients with stage IV lung cancer or lung cancer that that has spread to nearby tissue or lymph nodes (locally advanced). Radiation therapy is a standard cancer treatment that uses high energy rays to kill cancer cells and shrink tumors. Split-course adaptive radiation therapy uses patient disease response to alter the intensity of the radiation therapy. Immunotherapy with monoclonal antibodies such as pembrolizumab, ipilimumab, cemiplimab, atezolizumab or nivolumab may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs like carboplatin, pemetrexed, and paclitaxel work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving split-course adaptive radiation therapy with standard treatments like immunotherapy and chemotherapy may be more effective at treating stage IV or locally advanced lung cancer than giving them alone.
Lung,
Non Small Cell,
Phase I
I/II
Osmundson, Evan
NCT05501665
VICCTHOP2185
Expanded Access Protocol Using 131I-MIBG
Multiple Cancer Types
Protocol JDI2007-01 is an Expanded Access Protocol with therapeutic 131I-MIBG for patients with neuroblastoma or pheochromocytoma / paraganglioma, who otherwise do not qualify for available treatments, or where approved treatment is not commercially available.
Neuroblastoma (Pediatrics),
Pediatric Solid Tumors
N/A
Kitko, Carrie
NCT01590680
VICCPED1249
Testing Pump Chemotherapy in Addition to Standard of Care Chemotherapy Versus Standard of Care Chemotherapy Alone for Patients With Unresectable Colorectal Liver Metastases: The PUMP Trial
This phase III trial compares hepatic arterial infusion (HAI) (pump chemotherapy) in addition to standard of care chemotherapy versus standard of care chemotherapy alone in treating patients with colorectal cancer that has spread to the liver (liver metastases) and cannot be removed by surgery (unresectable). HAI uses a catheter to carry a tumor-killing chemotherapy drug called floxuridine directly into the liver. HAI is already approved by the Food and Drug Administration (FDA) for use in metastatic colorectal cancer to the liver, but it is only available at a small number of hospitals, and most of the time it is not used until standard chemotherapy stops working. Standard chemotherapy drugs work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding HAI to standard chemotherapy may be effective in shrinking or stabilizing unresectable colorectal liver metastases.
Not Available
III
Padmanabhan, Sekhar
NCT05863195
VICC-NTGIT23530
Phase 1 Study of INBRX-109 in Subjects with Locally Advanced or Metastatic Solid Tumors Including Sarcomas
Multiple Cancer Types
This is a first-in-human, open-label, non-randomized, three-part phase 1 trial of INBRX-109, which is a recombinant humanized tetravalent antibody targeting the human death receptor 5 (DR5).
Miscellaneous,
Phase I
I
Davis, Elizabeth
NCT03715933
VICCMDP2287
Gene Signatures to Guide HR+MBC Therapy in a Diverse Cohort
Breast
Breast
This is an open-label, multicenter, two-arm Phase II clinical trial that will evaluate the impact of 2nd line chemotherapy (i.e. capecitabine) on survival in patients with non-Luminal A hormone receptor-positive (HR+) metastatic breast cancer (MBC)
Breast
II
Reid, Sonya
NCT05693766
VICCBRE2256
LEGEND Study: EG-70 in NMIBC Patients BCG-Unresponsive and High-Risk NMIBC Incompletely Treated With BCG or BCG-Nave
This study will evaluate the safety and efficacy of intravesical administration of EG-70 in the bladder and its effect on bladder tumors in patients with NMIBC.
This study study consists of two phases; a Phase 1 dose-escalation to establish safety and recommended the phase 2 dose, followed by a Phase 2 study to establish how effective the treatment is.
The Study will include patients with NMIBC with Cis for whom BCG therapy is unresponsive and patients with NMIBC with Cis who are BCG-nave or inadequately treated.
This study study consists of two phases; a Phase 1 dose-escalation to establish safety and recommended the phase 2 dose, followed by a Phase 2 study to establish how effective the treatment is.
The Study will include patients with NMIBC with Cis for whom BCG therapy is unresponsive and patients with NMIBC with Cis who are BCG-nave or inadequately treated.
Not Available
I/II
Chang, Sam
NCT04752722
VICC-DDURO24102P