Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Carmustine Wafer in Combination With Retifanlimab and Radiation With/Without Temozolomide in Subjects With Glioblastoma

Multiple Cancer Types

The purpose of the study is to evaluate the safety and survival of carmustine wafers and radiation and retifanlimab with or without temozolomide (TMZ) in newly-diagnosed adult subjects with glioblastoma multiform after carmustine wafer placement.
Neuro-Oncology, Phase I
I
Thompson, Reid
NCT05083754
VICCNEUP22119

Testing the Addition of a New Anti-cancer Drug, M3814 (Peposertib), to the Usual Radiotherapy in Patients With Locally Advanced Pancreatic Cancer

Pancreatic

This phase I/II trial studies the safety, side effects and best dose of M3814 and to see how well it works when given together with radiation therapy in treating patients with pancreatic cancer that has spread to nearby tissue or lymph nodes (locally advanced). M3814 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving M3814 and hypofractionated radiation therapy together may be safe, tolerable and/or more effective than radiation therapy alone in treating patients with locally advanced pancreatic cancer.
Pancreatic
I/II
Cardin, Dana
NCT04172532
NCIGIP10366

A Study of Elritercept to Treat Anemia in Adults With Very Low, Low, or Intermediate Risk Myelodysplastic Syndromes (MDS) Who Need Regular Blood Transfusions

Myelodysplastic Syndrome

The main aim of this study is to find out how well elritercept works in lowering the need for RBC transfusions. Other aims are to learn how well elritercept works in reducing the need for RBC transfusions over longer periods of time or in adults with high transfusion needs. The study will also check on how safe elritercept is and how well it is tolerated.
Myelodysplastic Syndrome
III
Kishtagari, Ashwin
NCT06499285
VICCHEM24599

pBI-11 & TA-HPV (With Pembrolizumab as Treatment for Patients w/Advanced, PD-L1 CPS1, hrHPV+ Oropharyngeal Cancer

This phase II trial tests how well pB1-11 and human papillomavirus tumor antigen (TA-HPV) vaccines in combination with pembrolizumab work in treating patients with oropharyngeal cancer that has come back (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic) and that is PD-L1 and human papillomavirus (HPV) positive. Oropharyngeal cancer is a type of head and neck cancer involving structures in the back of the throat (the oropharynx), such as the non-bony back roof of the mouth (soft palate), sides and back wall of the throat, tonsils, and back third of the tongue. Scientists have found that some strains or types of a virus called HPV can cause oropharyngeal cancer. pBI-11 is a circular deoxyribonucleic acid (DNA) (plasmid) vaccine that promotes antibody, cytotoxic T cell, and protective immune responses. TA-HPV is an investigational recombinant vaccina virus derived from a strain of the vaccina virus which was widely used for smallpox vaccination. Vaccination with this TA-HPV vaccine may stimulate the immune system to mount a cytotoxic T cell response against tumor cells positive for HPV, resulting in decreased tumor growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread by inhibiting the PD-1 receptor. These investigational vaccines could cause or enhance an immune response in the body against HPV, during which time the activity of pembrolizumab against oropharyngeal cancer associated with HPV may be strengthened. These drugs in combination may be more effective in increasing the ability of the immune system to fight oropharyngeal cancer than pembrolizumab alone.
Not Available
II
Not Available
NCT05799144
VICCHN2208

A Study to Compare Blinatumomab Alone to Blinatumomab With Nivolumab in Patients Diagnosed With First Relapse B-Cell Acute Lymphoblastic Leukemia (B-ALL)

This phase II trial studies the effect of nivolumab in combination with blinatumomab compared to blinatumomab alone in treating patients with B-cell acute lymphoblastic leukemia (B-ALL) that has come back (relapsed). Down syndrome patients with relapsed B-ALL are included in this study. Blinatumomab is an antibody, which is a protein that identifies and targets specific molecules in the body. Blinatumomab searches for and attaches itself to the cancer cell. Once attached, an immune response occurs which may kill the cancer cell. Nivolumab is a medicine that may boost a patient's immune system. Giving nivolumab in combination with blinatumomab may cause the cancer to stop growing for a period of time, and for some patients, it may lessen the symptoms, such as pain, that are caused by the cancer.
Not Available
II
Not Available
NCT04546399
COGAALL1821

Targeted Therapy Directed by Genetic Testing in Treating Patients With Locally Advanced or Advanced Solid Tumors, The ComboMATCH Screening Trial

Multiple Cancer Types

This ComboMATCH patient screening trial is the gateway to a coordinated set of clinical trials to study cancer treatment directed by genetic testing. Patients with solid tumors that have spread to nearby tissue or lymph nodes (locally advanced) or have spread to other places in the body (advanced) and have progressed on at least one line of standard systemic therapy or have no standard treatment that has been shown to prolong overall survival may be candidates for these trials. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with some genetic changes or abnormalities (mutations) may benefit from treatment that targets that particular genetic mutation. ComboMATCH is designed to match patients to a treatment that may work to control their tumor and may help doctors plan better treatment for patients with locally advanced or advanced solid tumors.
Breast, Gastrointestinal, Gynecologic, Head/Neck, Lung, Melanoma, Neuro-Oncology, Sarcoma, Urologic
II
Choe, Jennifer
NCT05564377
VICC-NTMDT23238

Inotuzumab Ozogamicin in Treating Younger Patients With B-Lymphoblastic Lymphoma or Relapsed or Refractory CD22 Positive B Acute Lymphoblastic Leukemia

This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
Not Available
II
Not Available
NCT02981628
COGAALL1621

Biomarker Platform (Virtual Nodule Clinic) for the Management of Indeterminate Pulmonary Nodules

Lung

This clinical trial studies whether a biomarker platform, the Virtual Nodule Clinic, can be used for the management of lung (pulmonary) nodules that are not clearly non-cancerous (benign) or clearly cancerous (malignant) (indeterminate pulmonary nodules \[IPNs\]). The management of IPNs is based on estimating the likelihood that the observed nodule is malignant. Many things, such as age, smoking history, and current symptoms, are considered when making a prediction of the likelihood of malignancy. Radiographic imaging characteristics are also considered. Lung nodule management for IPNs can result in unnecessary invasive procedures for nodules that are ultimately determined to be benign, or potential delays in treatment when results of tests cannot be determined or are falsely negative. The Virtual Nodule Clinic is an artificial intelligence (AI) based imaging software within the electronic health record which makes certain that identified pulmonary nodules are screened by clinicians with expertise in nodule management. The Virtual Nodule Clinic also features an AI based radiomic prediction score which designates the likelihood that a pulmonary nodule is malignant. This may improve the ability to manage IPNs and lower unnecessary invasive procedures or treatment delays. Using the Virtual Nodule Clinic may work better for the management of IPNs.
Lung
N/A
Maldonado, Fabien
NCT06638398
VICC-IDTHO24059

OP-1250 (Palazestrant) vs. Standard of Care for the Treatment of ER+/HER2- Advanced Breast Cancer

This phase 3 clinical trial compares the safety and efficacy of palazestrant (OP-1250) to the standard-of-care options of fulvestrant or an aromatase inhibitor in women and men with breast cancer whose disease has advanced on one endocrine therapy in combination with a CDK4/6 inhibitor.
Not Available
III
Abramson, Vandana
NCT06016738
VICC-DTBRE23292

Testing Nivolumab and Ipilimumab Immunotherapy With or Without the Targeted Drug Cabozantinib in Recurrent, Metastatic, or Incurable Nasopharyngeal Cancer

Head/Neck

This phase II trial tests how well nivolumab and ipilimumab immunotherapy with or without cabozantinib works in treating patients with nasopharyngeal cancer that has come back (after a period of improvement) (recurrent), has spread from where it first started (primary site) to other places in the body (metastatic), or for which no treatment is currently available (incurable). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving immunotherapy with nivolumab and ipilimumab and targeted therapy with cabozantinib may help shrink and stabilize nasopharyngeal cancer.
Head/Neck
II
Choe, Jennifer
NCT05904080
ALLHNA092105

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.