Clinical Trials Search at Vanderbilt-Ingram Cancer Center
Targeted Treatment for Metastatic Prostate Cancer, The PREDICT Trial
This phase II trial evaluates whether genetic testing in prostate cancer is helpful in deciding which study treatment patients are assigned. Patient cancer tissue samples are obtained from a previous surgery or biopsy procedure and tested for deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) abnormalities or mutations in their cancer. Valemetostat tosylate is in a class of medications called EZH1/EZH2 inhibitors. It blocks proteins called EZH1 and EZH2, which may help slow or stop the spread of tumor cells. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Cabazitaxel injection is in a class of medications called microtubule inhibitors. It works by slowing or stopping the growth of tumor cells. Abiraterone acetate blocks tissues from making androgens (male hormones), such as testosterone. This may cause the death of tumor cells that need androgens to grow. It is a type of anti-androgen. Enzalutamide is in a class of medications called androgen receptor inhibitors. It works by blocking the effects of androgen (a male reproductive hormone) to stop the growth and spread of tumor cells. Lutetium Lu 177 vipivotide tetraxetan is in a class of medications called radiopharmaceuticals. It works by targeting and delivering radiation directly to tumor cells which damages and kills these cells. Assigning patients to targeted treatment based on genetic testing may help shrink or slow the cancer from growing
Not Available
II
Schaffer, Kerry
NCT06632977
ALLUROA032102
De-Escalation of Breast Radiation Trial for Hormone Sensitive, HER-2 Negative, Oncotype Recurrence Score Less Than or Equal to 18 Breast Cancer (DEBRA)
Breast
Breast
This Phase III Trial evaluates whether breast conservation surgery and endocrine therapy results in a non-inferior rate of invasive or non-invasive ipsilateral breast tumor recurrence (IBTR) compared to breast conservation with breast radiation and endocrine therapy.
Breast
III
Chak, Bapsi
NCT04852887
NRGBREBR007
Safety and Efficacy of ALLO-501A Anti-CD19 Allogeneic CAR T Cells in Adults with Relapsed/Refractory Large B Cell Lymphoma, Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma (ALPHA2)
This is a single-arm, open label, multicenter Phase 1/2 study evaluating ALLO-501A in adult subjects with R/R LBCL and CLL/SLL. The purpose of the ALPHA2 study is to assess the safety, efficacy, and cell kinetics of ALLO-501A in adults with relapsed or refractory large B-cell lymphoma and assess the safety of ALLO-501A in adults with relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) after a lymphodepletion regimen comprising fludarabine, cyclophosphamide, and ALLO-647.
Not Available
II
Jallouk, Andrew
NCT04416984
VICC-DTCTT24008
Testing the Addition of Abemaciclib to Olaparib for Women With Recurrent Ovarian Cancer
This phase I/Ib trial identifies the side effects and best dose of abemaciclib when given together with olaparib in treating patients with ovarian cancer that responds at first to treatment with drugs that contain the metal platinum but then comes back within a certain period (recurrent platinum-resistant). Abemaciclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Olaparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep tumor cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Adding abemaciclib to olaparib may work better to treat recurrent platinum-resistant ovarian cancer.
Not Available
I
Brown, Alaina
NCT04633239
VICC-NTGYN24186P
A Study to Compare Blinatumomab Alone to Blinatumomab With Nivolumab in Patients Diagnosed With First Relapse B-Cell Acute Lymphoblastic Leukemia (B-ALL)
This phase II trial studies the effect of nivolumab in combination with blinatumomab compared to blinatumomab alone in treating patients with B-cell acute lymphoblastic leukemia (B-ALL) that has come back (relapsed). Down syndrome patients with relapsed B-ALL are included in this study. Blinatumomab is an antibody, which is a protein that identifies and targets specific molecules in the body. Blinatumomab searches for and attaches itself to the cancer cell. Once attached, an immune response occurs which may kill the cancer cell. Nivolumab is a medicine that may boost a patient's immune system. Giving nivolumab in combination with blinatumomab may cause the cancer to stop growing for a period of time, and for some patients, it may lessen the symptoms, such as pain, that are caused by the cancer.
Not Available
II
Not Available
NCT04546399
COGAALL1821
Avelumab With Binimetinib, Sacituzumab Govitecan, or Liposomal Doxorubicin in Treating Stage IV or Unresectable, Recurrent Triple Negative Breast Cancer
Breast
Breast
This phase II trial studies how well the combination of avelumab with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan works in treating patients with triple negative breast cancer that is stage IV or is not able to be removed by surgery (unresectable) and has come back (recurrent). Immunotherapy with checkpoint inhibitors like avelumab require activation of the patient's immune system.
This trial includes a two week induction or lead-in of medications that can stimulate the immune system. It is our hope that this induction will improve the response to immunotherapy with avelumab. One treatment, sacituzumab Govitecan, is a monoclonal antibody called sacituzumab linked to a chemotherapy drug called SN-38. Sacituzumab govitecan is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of tumor cells, known as Tumor-associated calcium signal transducer 2 (TROP2) receptors, and delivers SN-38 to kill them. Another treatment, liposomal doxorubicin, is a form of the anticancer drug doxorubicin that is contained in very tiny, fat-like particles. It may have fewer side effects and work better than doxorubicin, and may enhance factors associated with immune response. The third medication is called binimetinib, which may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth, and may help activate the immune system. It is not yet known whether giving avelumab in combination with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan will work better in treating patients with triple negative breast cancer.
This trial includes a two week induction or lead-in of medications that can stimulate the immune system. It is our hope that this induction will improve the response to immunotherapy with avelumab. One treatment, sacituzumab Govitecan, is a monoclonal antibody called sacituzumab linked to a chemotherapy drug called SN-38. Sacituzumab govitecan is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of tumor cells, known as Tumor-associated calcium signal transducer 2 (TROP2) receptors, and delivers SN-38 to kill them. Another treatment, liposomal doxorubicin, is a form of the anticancer drug doxorubicin that is contained in very tiny, fat-like particles. It may have fewer side effects and work better than doxorubicin, and may enhance factors associated with immune response. The third medication is called binimetinib, which may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth, and may help activate the immune system. It is not yet known whether giving avelumab in combination with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan will work better in treating patients with triple negative breast cancer.
Breast
II
Abramson, Vandana
NCT03971409
VICCBRE1987
A Study of Tucatinib With Trastuzumab and mFOLFOX6 Versus Standard of Care Treatment in First-line HER2+ Metastatic Colorectal Cancer
This study is being done to find out if tucatinib with other cancer drugs works better than standard of care to treat participants with HER2 positive colorectal cancer. This study will also determine what side effects happen when participants take this combination of drugs. A side effect is anything a drug does to the body besides treating your disease.
Participants in this study have colorectal cancer that has spread through the body (metastatic) and/or cannot be removed with surgery (unresectable).
Participants will be assigned randomly to the tucatinib group or standard of care group. The tucatinib group will get tucatinib, trastuzumab, and mFOLFOX6. The standard of care group will get either:
* mFOLFOX6 alone,
* mFOLFOX6 with bevacizumab, or
* mFOLFOX6 with cetuximab mFOLFOX6 is a combination of multiple drugs. All of the drugs given in this study are used to treat this type of cancer.
Participants in this study have colorectal cancer that has spread through the body (metastatic) and/or cannot be removed with surgery (unresectable).
Participants will be assigned randomly to the tucatinib group or standard of care group. The tucatinib group will get tucatinib, trastuzumab, and mFOLFOX6. The standard of care group will get either:
* mFOLFOX6 alone,
* mFOLFOX6 with bevacizumab, or
* mFOLFOX6 with cetuximab mFOLFOX6 is a combination of multiple drugs. All of the drugs given in this study are used to treat this type of cancer.
Not Available
III
Not Available
NCT05253651
VICC-DTGIT23052
A Study to Assess Adverse Events of Intravenously (IV) Infused Etentamig (ABBV-383) in Adult Participants With Relapsed or Refractory Multiple Myeloma
Multiple Myeloma (MM) is a cancer of the blood's plasma cells ( blood cell). The cancer is typically found in the bones and bone marrow (the spongy tissue inside of the bones) and can cause bone pain, fractures, infections, weaker bones, and kidney failure. Treatments are available, but MM can come back (relapsed) or may not get better (refractory) with treatment. This is a study to determine adverse events and change in disease symptoms of etentamig (ABBV-383) in adult participants with relapsed/refractory (R/R) MM.
Etentamig (ABBV-383) is an investigational drug being developed for the treatment of R/R Multiple Myeloma (MM). This study is broken into 4 Arms; Arm A (Parts 1 and 2), Arm B and Arms C \& D. Arm A includes 2 parts: step-up dose optimization (Part 1) and dose expansion (Part 2). In Part 1, different level of step-up doses are tested followed by the target dose of etentamig (ABBV-383). In Part 2, the step-up dose identified in Part 1 (Dose A) will be used followed by the target dose A of etentamig (ABBV-383). In Arm B a flat dose of etentamig (ABBV-383) will be tested. In Arms C \& D, the step-up dose identified in Arm A will be used followed by the target dose of etentamig (ABBV-383) to investigate outpatient administration of etentamig (ABBV-383). Around 210 adult participants with relapsed/refractory multiple myeloma will be enrolled at approximately 50 sites across the world.
Participants will receive etentamig (ABBV-383) as an infusion into the vein in 28 day cycles for approximately 3 years.
There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic. The effect of the treatment will be checked by medical assessments, blood tests, checking for side effects and questionnaires.
Etentamig (ABBV-383) is an investigational drug being developed for the treatment of R/R Multiple Myeloma (MM). This study is broken into 4 Arms; Arm A (Parts 1 and 2), Arm B and Arms C \& D. Arm A includes 2 parts: step-up dose optimization (Part 1) and dose expansion (Part 2). In Part 1, different level of step-up doses are tested followed by the target dose of etentamig (ABBV-383). In Part 2, the step-up dose identified in Part 1 (Dose A) will be used followed by the target dose A of etentamig (ABBV-383). In Arm B a flat dose of etentamig (ABBV-383) will be tested. In Arms C \& D, the step-up dose identified in Arm A will be used followed by the target dose of etentamig (ABBV-383) to investigate outpatient administration of etentamig (ABBV-383). Around 210 adult participants with relapsed/refractory multiple myeloma will be enrolled at approximately 50 sites across the world.
Participants will receive etentamig (ABBV-383) as an infusion into the vein in 28 day cycles for approximately 3 years.
There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic. The effect of the treatment will be checked by medical assessments, blood tests, checking for side effects and questionnaires.
Not Available
I
Not Available
NCT05650632
VICC-DTPCL23010P
Testing the Use of Neratinib or the Combination of Neratinib and Palbociclib Targeted Treatment for HER2+ Solid Tumors (A ComboMATCH Treatment Trial)
This phase II ComboMATCH treatment trial compares the effect of neratinib to the combination of neratinib and palbociclib in treating patients with HER2 positive solid tumors. Neratinib and palbociclib are in a class of medications called kinase inhibitors. They work by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of tumor cells. Giving neratinib and palbociclib in combination may shrink or stabilize cancers that over-express a specific biomarker called HER2.
Not Available
II
Choe, Jennifer
NCT06126276
ECOGMDEAY191-N5
A Study Using Nivolumab, in Combination With Chemotherapy Drugs to Treat Nasopharyngeal Carcinoma (NPC)
This phase II trial tests effects of nivolumab in combination with chemotherapy drugs prior to radiation therapy patients with nasopharyngeal carcinoma (NPC). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as gemcitabine and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Researchers want to find out what effects, good and/or bad, adding nivolumab to chemotherapy has on patients with newly diagnosed NPC. In addition, they want to find out if children with NPC may be treated with less radiation therapy and whether this decreases the side effects of therapy.
Not Available
II
Not Available
NCT06064097
VICC-NTPED24105