A Study Evaluating the Efficacy and Safety of Multiple Treatment Combinations in Patients With Metastatic or Locally Advanced Breast Cancer
Multiple Cancer Types
This is an umbrella study evaluating the efficacy and safety of multiple treatment combinations in participants with metastatic or inoperable locally advanced breast cancer.
The study will be performed in two stages. During Stage 1, six cohorts will be enrolled in parallel in this study:
Cohort 1 will consist of programmed death-ligand 1 (PD-L1)-positive participants who have received no prior systemic therapy for metastatic or inoperable locally advanced triple-negative breast cancer (TNBC) (first-line \[1L\] PD-L1+ cohort).
Cohort 2 will consist of participants who had disease progression during or following 1L treatment with chemotherapy for metastatic or inoperable locally-advanced TNBC and have not received cancer immunotherapy (CIT) (second-line \[2L\] CIT-nave cohort).
Cohort 3, 5, and 6 will consist of participants with locally advanced or metastatic hormone receptor-positive (HR+), human epidermal growth factor receptor 2 (HER2)-negative disease with one or more PIK3CA mutations.
Cohort 4 will consist of participants with locally advanced or metastatic HER2+ /HER2-low disease with one or more PIK3CA mutations who had disease progression on standard-of-care therapies (HER2+ /HER2-low cohort).
In each cohort, eligible participants will initially be assigned to one of several treatment arms (Stage 1). During Stage 2, participants in the 2L CIT-nave cohort who experience disease progression, loss of clinical benefit, or unacceptable toxicity during Stage 1 may be eligible to continue treatment with a different treatment combination, provided Stage 2 is open for enrollment and all eligibility criteria are met.
The study will be performed in two stages. During Stage 1, six cohorts will be enrolled in parallel in this study:
Cohort 1 will consist of programmed death-ligand 1 (PD-L1)-positive participants who have received no prior systemic therapy for metastatic or inoperable locally advanced triple-negative breast cancer (TNBC) (first-line \[1L\] PD-L1+ cohort).
Cohort 2 will consist of participants who had disease progression during or following 1L treatment with chemotherapy for metastatic or inoperable locally-advanced TNBC and have not received cancer immunotherapy (CIT) (second-line \[2L\] CIT-nave cohort).
Cohort 3, 5, and 6 will consist of participants with locally advanced or metastatic hormone receptor-positive (HR+), human epidermal growth factor receptor 2 (HER2)-negative disease with one or more PIK3CA mutations.
Cohort 4 will consist of participants with locally advanced or metastatic HER2+ /HER2-low disease with one or more PIK3CA mutations who had disease progression on standard-of-care therapies (HER2+ /HER2-low cohort).
In each cohort, eligible participants will initially be assigned to one of several treatment arms (Stage 1). During Stage 2, participants in the 2L CIT-nave cohort who experience disease progression, loss of clinical benefit, or unacceptable toxicity during Stage 1 may be eligible to continue treatment with a different treatment combination, provided Stage 2 is open for enrollment and all eligibility criteria are met.
Breast,
Phase I
I/II
Kennedy, Laura
NCT03424005
VICCBREP2126
Triptorelin for the Prevention of Ovarian Damage in Adolescents and Young Adults With Cancer
Ovarian
Ovarian
This phase III trial compares the effect of giving triptorelin vs no triptorelin in preventing ovarian damage in adolescents and young adults (AYAs) with cancer receiving chemotherapy with an alkylating agents. Alkylating agents are part of standard chemotherapy, but may cause damage to the ovaries. If the ovaries are not working well or completely shut down, then it will be difficult or impossible to get pregnant in the future. Triptorelin works by blocking certain hormones and causing the ovaries to slow down or pause normal activity. The triptorelin used in this study stays active in the body for 24 weeks or about 6 months after a dose is given. After triptorelin is cleared from the body, the ovaries resume normal activities. Adding triptorelin before the start of chemotherapy treatment may reduce the chances of damage to the ovaries.
Ovarian
III
Davis, Elizabeth
NCT06513962
COGALTE2131
Testing the Addition of the Anti-cancer Drug Venetoclax and/or the Anti-cancer Immunotherapy Blinatumomab to the Usual Chemotherapy Treatment for Infants With Newly Diagnosed KMT2A-rearranged or KMT2A-non-rearranged Leukemia
Leukemia
Leukemia
This phase II trial tests the addition of venetoclax and/or blinatumomab to usual chemotherapy for treating infants with newly diagnosed acute lymphoblastic leukemia (ALL) with a KMT2A gene rearrangement (KMT2A-rearranged \[R\]) or without a KMT2A gene rearrangement (KMT2A-germline \[G\]). Venetoclax is in a class of medications called B-cell lymphoma-2 (Bcl-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Blinatumomab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Chemotherapy drugs work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding venetoclax and/or blinatumomab to standard chemotherapy may be more effective at treating patients with ALL than standard chemotherapy alone, but it may also cause more side effects. This clinical trial evaluates the safety and effectiveness of adding venetoclax and/or blinatumomab to chemotherapy for the treatment of infants with KMT2A-R or KMT2A-G ALL.
Leukemia
II
Smith, Brianna
NCT06317662
COGAALL2321
Cemiplimab for the Treatment of Locally Advanced Head and Neck Basal Cell Carcinoma Before Surgery
Head/Neck
Head/Neck
This phase II trial tests how well cemiplimab works in treating basal cell carcinoma of the head and neck that has spread to nearby tissue or lymph nodes (locally advanced) before surgery (neoadjuvant). Cemiplimab is a human recombinant monoclonal IgG4 antibody that may allow the body's immune system to work against tumor cells. Giving cemiplimab before surgery may make the tumor smaller and make it easier to remove.
Head/Neck
II
Topf, Michael
NCT05929664
VICC-ITHAN23127
A Single Arm Phase II Study of ADjuvant Endocrine Therapy, Pertuzumab, and Trastuzumab for Patients With Anatomic Stage I Hormone Receptor-positive, HER2-positive Breast Cancer
Breast
Breast
This research study is studying a combination of HER2-directed therapies (trastuzumab and pertuzumab) and hormonal therapy as a treatment after surgery for hormone receptor positive breast cancer.
The study drugs involved in this study are:
* A combination of trastuzumab and pertuzumab given as an injection under the skin (PHESGO)
* Hormonal (endocrine) Treatment
The study drugs involved in this study are:
* A combination of trastuzumab and pertuzumab given as an injection under the skin (PHESGO)
* Hormonal (endocrine) Treatment
Breast
II
Abramson, Vandana
NCT04569747
VICCBRE2243
Dose Optimization and Expansion Study of DFV890 in Adult Patients With Myeloid Diseases
Hematologic
Hematologic
Study CDFV890G12101 is an open-label, phase 1b, multicenter study with a randomized two-dose optimization part, and a dose expansion part consisting of three groups evaluating DFV890 in patients with myeloid diseases. The purpose of this study is to assess the safety, tolerability, pharmacokinetics, pharmacodynamics, efficacy and recommended dose for single agent DFV890 in patients with lower risk (LR: very low, low or intermediate risk) myelodysplastic syndromes (LR MDS), lower risk chronic myelomonocytic leukemia (LR CMML) and High-Risk Clonal Cytopenia of Undetermined Significance (HR CCUS).
Hematologic
I
Kishtagari, Ashwin
NCT05552469
VICC-DTHEM23007P
Testing the Effectiveness of Two Immunotherapy Drugs (Nivolumab and Ipilimumab) With One Anti-cancer Targeted Drug (Cabozantinib) for Rare Genitourinary Tumors
Multiple Cancer Types
This phase II trial studies how well cabozantinib works in combination with nivolumab and ipilimumab in treating patients with rare genitourinary (GU) tumors that has spread from where it first started (primary site) to other places in the body. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib, nivolumab, and ipilimumab may work better in treating patients with genitourinary tumors that have no treatment options compared to giving cabozantinib, nivolumab, or ipilimumab alone.
Bladder,
Kidney (Renal Cell),
Rectal
II
Tan, Alan
NCT03866382
ALLIANCEUROA031702
A Study to Evaluate the Safety, Tolerability of INCB160058 in Participants With Myeloproliferative Neoplasms
This study is being conducted to assess the Safety, Tolerability, and Pharmacokinetics of INCB160058 in Participants With Myeloproliferative Neoplasms.
Not Available
I
Kishtagari, Ashwin
NCT06313593
VICC-DTHEM24055P
Standard Systemic Therapy With or Without Definitive Treatment in Treating Participants With Metastatic Prostate Cancer
Prostate
Prostate
This phase III trial studies how well standard systemic therapy with or without definitive treatment (prostate removal surgery or radiation therapy) works in treating participants with prostate cancer that has spread to other places in the body. Addition of prostate removal surgery or radiation therapy to standard systemic therapy for prostate cancer may lower the chance of the cancer growing or spreading.
Prostate
III
Schaffer, Kerry
NCT03678025
SWOGUROS1802
Eltanexor and Venetoclax in Relapsed or Refractory Myelodysplastic Syndrome and Acute Myeloid Leukemia
Multiple Cancer Types
This phase I trial tests the safety, side effects, and best dose of eltanexor in combination with venetoclax for the treatment of patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Eltanexor works by trapping "tumor suppressing proteins" within the cell, thus causing the cancer cells to die or stop growing. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving eltanexor together with venetoclax may be safe, tolerable and/or effective in treating patients with relapsed or refractory MDS or AML.
Leukemia,
Myelodysplastic Syndrome,
Phase I
I
Ball, Somedeb
NCT06399640
VICC-VCHEM23008P