Personalized Antibody-Drug Conjugate Therapy Based on RNA and Protein Testing for the Treatment of Advanced or Metastatic Solid Tumors (The ADC MATCH Screening and Treatment Trial)
Multiple Cancer Types
This phase II ADC MATCH screening and multi-sub-study treatment trial is evaluating whether biomarker-directed treatment with one of three antibody-drug conjugates (ADCs) (sacituzumab govitecan, enfortumab vedotin, and trastuzumab deruxtecan) works in treating patients with solid tumor cancers that have high expression of the Trop-2, nectin-4, or HER2 proteins and that may have spread from where they first started (primary site) to nearby tissue, lymph nodes, or distant parts of the body (advanced) or to other places in the body (metastatic). Precision medicine is a form of medicine that uses information about a person's genes, proteins, and environment to prevent, diagnose, or treat disease in a way that is tailored to the patient. ADCs such as sacituzumab govitecan, enfortumab vedotin, and trastuzumab deruxtecan are monoclonal antibodies attached to biologically active drugs and are a form of targeted therapy. Sacituzumab govitecan is a monoclonal antibody, called sacituzumab, linked to a drug called govitecan. Sacituzumab attaches to a protein called Trop-2 on the surface of tumor cells and delivers govitecan to kill them. Enfortumab vedotin is a monoclonal antibody, enfortumab, linked to an anticancer drug called vedotin. It works by helping the immune system to slow or stop the growth of tumor cells. Enfortumab attaches to a protein called nectin-4 on tumor cells in a targeted way and delivers vedotin to kill them. Trastuzumab deruxtecan is composed of a monoclonal antibody, called trastuzumab, linked to a chemotherapy drug, called deruxtecan. Trastuzumab attaches to HER2 positive tumor cells in a targeted way and delivers deruxtecan to kill them. Personalized treatment with sacituzumab govitecan, enfortumab vedotin, or trastuzumab deruxtecan may be an effective treatment option for patients with advanced or metastatic solid tumors that screen positive for high expression of Trop-2, nectin-4, or HER2, respectively.
Adrenocortical,
Bladder,
Breast,
Cervical,
Colon,
Dermatologic,
Esophageal,
GIST,
Gastric/Gastroesophageal,
Gastrointestinal,
Gynecologic,
Head/Neck,
Kidney (Renal Cell),
Liver,
Lung,
Melanoma,
Miscellaneous,
Ovarian,
Pancreatic,
Prostate,
Rectal,
Sarcoma,
Thyroid,
Urologic,
Uterine
II
Keedy, Vicki
NCT06311214
ETCMD10397
Disposable Perfusion Phantom for Accurate DCE (Dynamic Contrast Enhanced)-MRI Measurement of Pancreatic Cancer Therapy Response
Pancreatic
Pancreatic
The goal of this study is to investigate whether the therapeutic response of pancreatic tumors can be accurately assessed using quantitative DCE-MRI, when the inter/intra-scanner variability is reduced using the Point-of-care Portable Perfusion Phantom, P4. The intra-scanner variability over time leads to errors in therapy monitoring, while the inter-scanner variability impedes the comparison of data among institutes. The P4 is small enough to be imaged concurrently in the bore of a standard MRI scanner with a patient for real-time quality assurance. The P4 is safe, inexpensive and easily operable, thus it has great potential for widespread and routine clinical use for accurate diagnosis, prognosis and therapy monitoring.
This study has identified two arms, one arm is healthy individuals that will undergo DCE MRI at three different MRI locations to establish baseline results. The healthy volunteers will undergo these MRIs prior to the second arm, which contains patients with pancreatic cancer. The pancreatic cancer patients will only have DCE MRI done at one location.
This study has identified two arms, one arm is healthy individuals that will undergo DCE MRI at three different MRI locations to establish baseline results. The healthy volunteers will undergo these MRIs prior to the second arm, which contains patients with pancreatic cancer. The pancreatic cancer patients will only have DCE MRI done at one location.
Pancreatic
N/A
Xu, Junzhong
NCT04588025
VICCGI2099
A Phase Clinical Study of HLX22 in Combination With Trastuzumab and Chemotherapy for the Treatment of Gastroesophageal Junction and Gastric Cancer
Multiple Cancer Types
This is a double-blind, randomized, multiregion, comparative phase clinical study designed to evaluate the efficacy and safety of HLX22 in combination with trastuzumab and chemotherapy as first-line treatment in patients with HER2-positive locally advanced/metastatic adenocarcinoma of the gastric and/or gastroesophageal junction (G/GEJ).Eligible subjects will be randomized to the two groups based on a 1:1 ratio. Enrolled subjects shall be treated with the study drug until the loss of clinical benefit, death, intolerable toxicity, withdrawal of informed consent, or other reasons specified by the protocol (whichever occurs first).
Esophageal,
Gastric/Gastroesophageal
III
Gibson, Mike
NCT06532006
VICCGI24578
A Study Evaluating Single-agent Inavolisib and Inavolisib Plus Atezolizumab in PIK3CA-Mutated Cancers
Multiple Cancer Types
The purpose of the study is to assess the safety and efficacy of inavolisib as a single-agent and in combination with atezolizumab in participants with phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA)-mutated cancers, including previously treated head and neck squamous cell carcinoma (HNSCC).
Head/Neck,
Phase I
I
Choe, Jennifer
NCT06496568
VICCHNP22118
Clinical Trial of YH32367 in Patients With HER2 Positive Locally Advanced or Metastatic Solid Tumor
Miscellaneous
Miscellaneous
This first-in-human study will be counducted to evaluate the safety, tolerability, pharmacokinetics (PK) and anti-tumor activity of YH32367 in Patients with HER2-Positive Locally Advanced or Metastatic Solid Tumors.
Miscellaneous
I/II
Heumann, Thatcher
NCT05523947
VICC-DTMDT24023
A Multi-Institution Study of TGF Imprinted, Ex Vivo Expanded Universal Donor NK Cell Infusions as Adoptive Immunotherapy in Combination With Gemcitabine and Docetaxel in Patients With Relapsed or Refractory Pediatric Bone and Soft Tissue
Multiple Cancer Types
The purpose of this study is to determine if the addition of infusions of a type of immune cell called a "natural killer", or NK cell to the sarcoma chemotherapy regimen GEM/DOX (gemcitabine and docetaxel) can improve outcomes in people with childhood sarcomas that have relapsed or not responded to prior therapies.
The goals of this study are:
* To determine the safety and efficacy of the addition of adoptive transfer of universal donor, TGF imprinted (TGFi), expanded NK cells to the pediatric sarcoma salvage chemotherapeutic regimen gemcitabine/docetaxel (GEM/DOX) for treatment of relapsed and refractory pediatric sarcomas To determine the 6-month progression free survival achieved with this treatment in patients within cohorts of relapsed or refractory osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and non-rhabdomyosarcoma soft tissue sarcoma.
* To identify toxicities related to treatment with GEM/DOX + TGFi expanded NK cells
Participants will receive study drugs that include chemotherapy and NK cells in cycles; each cycle is 21 days long and you can receive up to 8 cycles.
* Gemcitabine (GEM): via IV on Days 1 and 8
* Docetaxel (DOX): via IV on Day 8
* Prophylactic dexamethasone: Day 7-9 to prevent fluid retention and hypersensitivity reaction
* Peg-filgrastim (PEG-GCSF) or biosimilar: Day 9 to help your white blood cell recover and allow more chemotherapy to be given
* TGFi NK cells: via IV on Day 12
The goals of this study are:
* To determine the safety and efficacy of the addition of adoptive transfer of universal donor, TGF imprinted (TGFi), expanded NK cells to the pediatric sarcoma salvage chemotherapeutic regimen gemcitabine/docetaxel (GEM/DOX) for treatment of relapsed and refractory pediatric sarcomas To determine the 6-month progression free survival achieved with this treatment in patients within cohorts of relapsed or refractory osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and non-rhabdomyosarcoma soft tissue sarcoma.
* To identify toxicities related to treatment with GEM/DOX + TGFi expanded NK cells
Participants will receive study drugs that include chemotherapy and NK cells in cycles; each cycle is 21 days long and you can receive up to 8 cycles.
* Gemcitabine (GEM): via IV on Days 1 and 8
* Docetaxel (DOX): via IV on Day 8
* Prophylactic dexamethasone: Day 7-9 to prevent fluid retention and hypersensitivity reaction
* Peg-filgrastim (PEG-GCSF) or biosimilar: Day 9 to help your white blood cell recover and allow more chemotherapy to be given
* TGFi NK cells: via IV on Day 12
Pediatrics,
Sarcoma
I/II
Borinstein, Scott
NCT05634369
VICCPED24617
Testing the Addition of Abemaciclib to Olaparib for Women With Recurrent Ovarian Cancer
This phase I/Ib trial identifies the side effects and best dose of abemaciclib when given together with olaparib in treating patients with ovarian cancer that responds at first to treatment with drugs that contain the metal platinum but then comes back within a certain period (recurrent platinum-resistant). Abemaciclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Olaparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep tumor cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Adding abemaciclib to olaparib may work better to treat recurrent platinum-resistant ovarian cancer.
Not Available
I
Brown, Alaina
NCT04633239
VICC-NTGYN24186P
Comparing Two Methods to Follow Patients With Pancreatic Cysts
Pancreatic
Pancreatic
The purpose of this study is to compare the two approaches for monitoring pancreatic cysts. The study doctors want to compare more frequent monitoring vs less frequent monitoring in order to learn which monitoring method leads to better outcome for patients with pancreatic cysts.
Pancreatic
N/A
Tan, Marcus
NCT04239573
ECOGGIEA2185
A Study to Compare Standard Therapy to Treat Hodgkin Lymphoma to the Use of Two Drugs, Brentuximab Vedotin and Nivolumab
Multiple Cancer Types
This phase III trial compares the effect of adding immunotherapy (brentuximab vedotin and nivolumab) to standard treatment (chemotherapy with or without radiation) to the standard treatment alone in improving survival in patients with stage I and II classical Hodgkin lymphoma. Brentuximab vedotin is in a class of medications called antibody-drug conjugates. It is made of a monoclonal antibody called brentuximab that is linked to a cytotoxic agent called vedotin. Brentuximab attaches to CD30 positive lymphoma cells in a targeted way and delivers vedotin to kill them. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs such as doxorubicin hydrochloride, bleomycin sulfate, vinblastine sulfate, dacarbazine, and procarbazine hydrochloride work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Cyclophosphamide is in a class of medications called alkylating agents. It works by damaging the cell's deoxyribonucleic acid (DNA) and may kill cancer cells. It may also lower the body's immune response. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill cancer cells. Vincristine is in a class of medications called vinca alkaloids. It works by stopping cancer cells from growing and dividing and may kill them. Prednisone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Adding immunotherapy to the standard treatment of chemotherapy with or without radiation may increase survival and/or fewer short-term or long-term side effects in patients with classical Hodgkin lymphoma compared to the standard treatment alone.
Pediatric Lymphoma,
Pediatrics
III
Smith, Christine
NCT05675410
VICC-NTPED23306
A Multi-phase Study of ASTX030 (Azacitidine and Cedazuridine) in Myeloid Neoplasm Alone or in Combination With Venetoclax in AML (AZTOUND Study)
Multiple Cancer Types
Study ASTX030-01 is a multi-phase study comprising of Phases 1-3 Monotherapy arms and a Phase 1 Combination Therapy arm Phase 1 Monotherapy consists of an open-label Dose Escalation Stage (Stage A) using multiple cohorts at escalating dose levels of oral cedazuridine and azacitidine (only one study drug will be escalated at a time) followed by a Dose Expansion Stage (Stage B). Phase 2 Monotherapy is a randomized, open-label, crossover study to compare oral ASTX030 to subcutaneous (SC) azacitidine. Phase 3 Monotherapy is a randomized open-label crossover study comparing the final fixed dose of oral ASTX030 to SC azacitidine. Phase 1 Combination Therapy is an open-label, multicenter, randomized, exploratory study comparing ASTX030 and SC azacitidine in combination with venetoclax in participants with AML.
The duration of this multi-phase study is approximately 7 years.
The duration of this multi-phase study is approximately 7 years.
Leukemia,
Myelodysplastic Syndrome,
Phase I
I/II/III
Savona, Michael
NCT04256317
VICCHEMP19146